We prove that in order to describe the Poisson boundary of rational affinities, it is necessary and sufficient to consider the action on real and all -adic fileds.
On prouve que pour décrire la frontière de Poisson des affinités à coefficients rationnels est nécessaire et suffisant de considérer l’action sur le corps réel et tous les corps -adiques.
Keywords: Poisson boundary, random walks, affine group, rational numbers, $p$-adic numbers
Mot clés : frontière de Poisson, marches aléatoires, groupe affine, nombres rationnels, nombres $p$-adiques
Brofferio, Sara 1
@article{AIF_2006__56_2_499_0, author = {Brofferio, Sara}, title = {The {Poisson} boundary of random rational affinities}, journal = {Annales de l'Institut Fourier}, pages = {499--515}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {2}, year = {2006}, doi = {10.5802/aif.2191}, mrnumber = {2226025}, zbl = {1087.60011}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2191/} }
TY - JOUR AU - Brofferio, Sara TI - The Poisson boundary of random rational affinities JO - Annales de l'Institut Fourier PY - 2006 SP - 499 EP - 515 VL - 56 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2191/ DO - 10.5802/aif.2191 LA - en ID - AIF_2006__56_2_499_0 ER -
%0 Journal Article %A Brofferio, Sara %T The Poisson boundary of random rational affinities %J Annales de l'Institut Fourier %D 2006 %P 499-515 %V 56 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2191/ %R 10.5802/aif.2191 %G en %F AIF_2006__56_2_499_0
Brofferio, Sara. The Poisson boundary of random rational affinities. Annales de l'Institut Fourier, Volume 56 (2006) no. 2, pp. 499-515. doi : 10.5802/aif.2191. https://aif.centre-mersenne.org/articles/10.5802/aif.2191/
[1] The random difference equation in the critical case, Ann. Probab., Volume 25 (1997) no. 1, pp. 478-493 | DOI | MR | Zbl
[2] Strict stationarity of generalized autoregressive processes, Ann. Probab., Volume 20 (1992) no. 4, pp. 1714-1730 | DOI | MR | Zbl
[3] Poisson boundary for finitely generated groups of rational affinities (Preprint)
[4] Speed of locally contractive stochastic systems, Ann. Probab., Volume 31 (2003) no. 4, pp. 2040-2067 | DOI | MR | Zbl
[5] Random walks on the affine group of local fields and of homogeneous trees, Ann. Inst. Fourier (Grenoble), Volume 44 (1994) no. 4, pp. 1243-1288 | DOI | Numdam | MR | Zbl
[6] Global fields, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., 1967, pp. 42-84 | MR
[7] Entropie, théorèmes limite et marches aléatoires, Probability measures on groups, VIII (Oberwolfach, 1985) (Lecture Notes in Math.), Volume 1210, Springer, Berlin, 1986, pp. 241-284 | MR | Zbl
[8] Quelques applications du théorème ergodique sous-additif, Conference on Random Walks (Kleebach, 1979) (French) (Astérisque), Volume 74, Soc. Math. France, Paris, 1980, p. 183-201, 4 | MR | Zbl
[9] Noyaux potentiels associés aux marches aléatoires sur les espaces homogènes. Quelques exemples clefs dont le groupe affine, Théorie du potentiel (Orsay, 1983) (Lecture Notes in Math.), Volume 1096, Springer, Berlin, 1984, pp. 223-260 | MR | Zbl
[10] Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 193-229 | MR | Zbl
[11] Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | DOI | MR | Zbl
[12] Poisson boundaries of random walks on discrete solvable groups, Probability measures on groups, X (Oberwolfach, 1990), Plenum, New York, 1991, pp. 205-238 | MR | Zbl
[13] The Poisson formula for groups with hyperbolic properties, Ann. of Math. (2), Volume 152 (2000) no. 3, pp. 659-692 | DOI | MR | Zbl
[14] Random difference equations and renewal theory for products of random matrices, Acta Math., Volume 131 (1973), pp. 207-248 | DOI | MR | Zbl
[15] Introduction to diophantine approximations, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966 | MR | Zbl
[16] On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables, Adv. in Appl. Probab., Volume 11 (1979) no. 4, pp. 750-783 | DOI | MR | Zbl
Cited by Sources: