A toute mesure positive sur telle que , nous associons un couple de Wald indéfiniment divisible, i.e. un couple de variables aléatoires tel que et sont indéfiniment divisibles, , et pour tout . Plus généralement, à une mesure positive sur telle que pour tout , nous associons une “famille d’Esscher” de couples de Wald indéfiniment divisibles. Nous donnons de nombreux exemples de telles familles d’Esscher. Celles liées à la fonction gamma et à la fonction zeta de Riemann possèdent des propriétés remarquables.
To any positive measure on , such that : we associate an infinitely divisible Wald couple, i.e. : a couple of random variables such that and are infinitely divisible, , and for any . More generally, to a positive measure on which satisfies : for every , we associate an “Esscher family” of infinitely divisible Wald couples. We give many examples of such Esscher families and we prove that the particular ones which are associated with the gamma and the zeta functions enjoy remarkable properties.
Mot clés : transformées de Laplace, lois indéfiniment divisibles, couples de Wald, fonctions gamma et zeta
Keywords: Laplace transforms, infinitely divisible laws, Wald couples, gamma and zeta functions
Roynette, Bernard 1 ; Yor, Marc 
@article{AIF_2005__55_4_1219_0, author = {Roynette, Bernard and Yor, Marc}, title = {Couples de {Wald} ind\'efiniment divisibles. {Exemples} li\'es \`a la fonction gamma {d'Euler} et \`a la fonction zeta de {Riemann}}, journal = {Annales de l'Institut Fourier}, pages = {1219--1283}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {4}, year = {2005}, doi = {10.5802/aif.2125}, zbl = {1083.60012}, mrnumber = {2157168}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2125/} }
TY - JOUR AU - Roynette, Bernard AU - Yor, Marc TI - Couples de Wald indéfiniment divisibles. Exemples liés à la fonction gamma d'Euler et à la fonction zeta de Riemann JO - Annales de l'Institut Fourier PY - 2005 SP - 1219 EP - 1283 VL - 55 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2125/ DO - 10.5802/aif.2125 LA - fr ID - AIF_2005__55_4_1219_0 ER -
%0 Journal Article %A Roynette, Bernard %A Yor, Marc %T Couples de Wald indéfiniment divisibles. Exemples liés à la fonction gamma d'Euler et à la fonction zeta de Riemann %J Annales de l'Institut Fourier %D 2005 %P 1219-1283 %V 55 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2125/ %R 10.5802/aif.2125 %G fr %F AIF_2005__55_4_1219_0
Roynette, Bernard; Yor, Marc. Couples de Wald indéfiniment divisibles. Exemples liés à la fonction gamma d'Euler et à la fonction zeta de Riemann. Annales de l'Institut Fourier, Tome 55 (2005) no. 4, pp. 1219-1283. doi : 10.5802/aif.2125. https://aif.centre-mersenne.org/articles/10.5802/aif.2125/
[BBE] The random difference equation in the critical case, Ann. Prob., Volume 25 (1997), pp. 478-493 | DOI | MR | Zbl
[BFSS] Random maps, coalescing saddles, singularity analysis and Airy phenomena, Random Struct. Algor., Volume 19 (2001), pp. 194-246 | DOI | MR | Zbl
[Bi] La fonction zêta et les probabilités, La fonction zêta, Éditions de l'École Polytechnique, 2003 | MR
[BPY] Probabilistic interpretation of the Jacobi theta and the Riemann zeta functions, via Brownian excursions, Bull. AMS, Volume 38 (2001), pp. 435-465 | MR | Zbl
[Br] Wishart processes, J. Theor. Prob., Volume 4 (1991), pp. 725-751 | DOI | MR | Zbl
[BY] Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math., Volume 2 (1987) no. 111, pp. 23-101 | MR | Zbl
[Ca] Les intégrales eulériennes et leurs applications, Dunod, 1966 | MR | Zbl
[CY] Exercises in Probability. A guided Tour from Measure Theory to Random Processes, via conditioning, Cambridge Series in Stat. and Prob. Math., 2003 | MR | Zbl
[DDMY] Some properties of the Wishart processes and a matrix extension of the Hartman Watson laws, Publ. RIMS Kyoto Univ., Volume 40 (2004) no. 4, pp. 1385-1412 | DOI | MR | Zbl
[DGY] Affine random equations and the stable distribution, Stud. Sci. Math. Hung., Volume 36 (2000), pp. 347-405 | MR | Zbl
[DRVY] On independent times and positions for Brownian motions, Rev. Mat. Iberoamericana, Volume 18 (2002), pp. 541-586 | MR | Zbl
[Er] Higher transcendental Functions, I, Mc Graw Hill, 1953 | Zbl
[Go] A stochastic Approach to the Gamma Function, Amer. Math. Monthly, Volume 101 (1994), pp. 858-865 | DOI | MR | Zbl
[Gr] On the self decomposability of Euler's gamma function, trad. in Lituanian Math., Volume 43 (2003) no. 5, pp. 295-385 | MR | Zbl
[Ha] Completely monotone families of solutions of -th order linear differential equations and infinitely divisible distributions, Ann. Scuola Normale Sup. Pisa, Volume IV-III (1976) no. 2, pp. 267-287 | Numdam | MR | Zbl
[JPY] Self similar processes with independent increments associated with Lévy and Bessel Processes, Stoch. Proc. Appl., Volume 100 (2002), pp. 188-223 | MR | Zbl
[JV] An integral representation for self-decomposable Banach space valued random variables, Zeit. Wahr. Verw. Gebiet, Volume 62 (1983), pp. 247-262 | DOI | MR | Zbl
[Kh] Limit for Sums of independent Random variables, Moscow and Lex, 1938
[Leb] Special functions and their applications, Dover Pub. Inc., 1972 | MR | Zbl
[LeG] Spatial Branching Processes, Random Snakes and Partial Differential Equations, Lecture Notes in Math., ETH Zürich, Birkhaüser, 1997 | MR | Zbl
[Let] A characterization of the Gamma distribution, Adv. App. Prob., Volume 17 (1985), pp. 911-912 | DOI | MR | Zbl
[LH] The Riemann zeta distribution, Bernoulli, Volume 7 (2001), pp. 817-828 | DOI | MR | Zbl
[Lu1] Characteristic functions, 2nd ed., Griffin, London, 1970 | MR | Zbl
[Lu2] Contribution to a problem of D. Van Dantzig, Th. Prob. Appl., Volume XIII (1968) no. 1, pp. 116-127 | MR | Zbl
[MNY] Subordinators related to the exponential functionals of Brownian bridges and explicit formulae for the semigroups of hyperbolic Brownian motions, Proceedings École d'Hiver de Siegmundsburg, `Stochastic Processes and Related Topics' (2000)
[MSW] Completely operator self-decomposable distributions, Tokyo J. Math., Volume 23 (2000), pp. 235-253 | DOI | MR | Zbl
[Mu] Aspects of Multivariate Statistical Theory, Wiley Series in Prob. and Math. Stat., 1982 | MR | Zbl
[Pa] An introduction to the theory of the Riemann Zeta Function, Cambridge University Press, 1988 | MR | Zbl
[Ri] Über die Anzahl der Primzahlen unter eine gegebner Grösse, Monatsber. Akad. Berlin (1859), pp. 671-680
[RVY] Limiting laws associated with brownian motion perturbed by normalized exponential weights (2005) Studia Math. Hung. (à paraître) | Zbl
[RY] Continuous Martingales and Brownian Motion, Gründ. der Math. Wissenschaft, 3e éd., Springer Verlag, Basel, 1999 | MR | Zbl
[Sa1] Lévy processes and infinitely divisible distributions, Cambridge Univ. Press., 1999 | MR | Zbl
[Sa2] Self similar processes with independent increments, Prob. Th. Rel. Fields, Volume 89 (1991), pp. 285-300 | DOI | MR | Zbl
[Sch] On Polya Frequency Functions I, J. Anal. Math., Volume 1 (1951), pp. 331-374 | DOI | MR | Zbl
[Va] Théorie des fonctions, 2e éd., Masson, 1955 | Zbl
[WW] A course of Modern Analysis, 4e éd., Cambridge University Press, 1927 | JFM | MR
[Yo1] Some aspects of Brownian Motion II, Some recent Martingales problems, Lecture Notes in Math., ETZ Zürich, Birkhaüser, 1997 | MR | Zbl
[Yo2] Exponential functionals of Brownian Motion and Related Processes, Springer Finance, 2001 | MR | Zbl
[Yo3] Loi de l'indice du lacet brownien et distribution de Hartman Watson, Zeitschrift für Wahr. und Verw. Gebiete, Volume 53 (1980), pp. 71-95 | DOI | MR | Zbl
[Zo] One dimensional Stable Distributions, Translations of Math. Monographs, 65, Amer. Math. Soc., 1986 | MR | Zbl
Cité par Sources :