Introduction to magnetic resonance imaging for mathematicians
Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1697-1716.

The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.

Nous introduisons les concepts et modèles de base en résonance magnétique nucléaire (RMN). Nous décrivons une expérience d’imagerie simple ainsi que la réduction du problème d’excitation sélective à un problème de scattering inverse.

DOI: 10.5802/aif.2063
Classification: 78A46,  81V35,  65R10,  65R32
Keywords: nuclear magnetic resonance, imaging, selective excitation, inverse scattering
@article{AIF_2004__54_5_1697_0,
     author = {Epstein, Charles L.},
     title = {Introduction to magnetic resonance imaging for mathematicians},
     journal = {Annales de l'Institut Fourier},
     pages = {1697--1716},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {5},
     year = {2004},
     doi = {10.5802/aif.2063},
     zbl = {02162438},
     mrnumber = {2127862},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2063/}
}
TY  - JOUR
TI  - Introduction to magnetic resonance imaging for mathematicians
JO  - Annales de l'Institut Fourier
PY  - 2004
DA  - 2004///
SP  - 1697
EP  - 1716
VL  - 54
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2063/
UR  - https://zbmath.org/?q=an%3A02162438
UR  - https://www.ams.org/mathscinet-getitem?mr=2127862
UR  - https://doi.org/10.5802/aif.2063
DO  - 10.5802/aif.2063
LA  - en
ID  - AIF_2004__54_5_1697_0
ER  - 
%0 Journal Article
%T Introduction to magnetic resonance imaging for mathematicians
%J Annales de l'Institut Fourier
%D 2004
%P 1697-1716
%V 54
%N 5
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2063
%R 10.5802/aif.2063
%G en
%F AIF_2004__54_5_1697_0
Epstein, Charles L. Introduction to magnetic resonance imaging for mathematicians. Annales de l'Institut Fourier, Volume 54 (2004) no. 5, pp. 1697-1716. doi : 10.5802/aif.2063. https://aif.centre-mersenne.org/articles/10.5802/aif.2063/

[Ab] A. Abragam Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1983 | MR: 450815 | Zbl: 0408.35068

[AKNS] M. Ablowitz; D. Kaup; A. Newell; H. Segur The inverse scattering transform-Fourier analysis for nonlinear problems, Studies Appl. Math., Tome 53 (1974), pp. 249-315

[BC] R. Beals; R. Coifman Scattering and inverse scattering for first order systems, CPAM, Tome 37 (1984), pp. 39-90 | MR: 728266 | Zbl: 0514.34021

[Bl] F. Bloch Nuclear induction, Phys. Review, Tome 70 (1946), pp. 460-474

[Ca1] J. Carlson Exact solutions for selective-excitation pulses, J. Magn. Res., Tome 94 (1991), pp. 376-386

[Ca2] J. Carlson Exact solutions for selective-excitation pulses. II. Excitation pulses with phase control, J. Magn. Res., Tome 97 (1992), pp. 65-78

[Cal] P.T. Callaghan Principles of nuclear magnetic resonance microscopy, Clarendon Press, Oxford, 1993

[EBW] R. Ernst; G. Bodenhausen; A. Wokaun Principles of nuclear magnetic resonance in one and two dimensions, Clarendon, Oxford, 1987

[Ep] C.L. Epstein Minimum power pulse synthesis via the inverse scattering transform, J. Magn. Res., Tome 167 (2004), pp. 185-210

[FT] L. Faddeev; L. Takhtajan Hamiltonian Methods in the Theory of Solitons, Springer Verlag, Berlin, Heidelberg, New York, 1987 | MR: 905674 | Zbl: 0632.58004

[GH] F. Grünbaum; A. Hasenfeld An exploration of the invertibility of the Bloch transform, Inverse Problems, Tome 2 (1986), pp. 75-81 | Zbl: 0702.35199

[Gr1] F. Grünbaum; C. Sadosky, ed. Trying to beat Heisenberg, Analysis and Partial Differential Equations. A Collection of Papers Dedicated to Mischa Cotlar (Lecture Notes in Pure and Applied Math.) Tome vol. 122 (1989), pp. 657-666 | MR: 1069673 | Zbl: 0703.58053

[Gr2] F. Grünbaum Concentrating a potential and its scattering transform for a discrete version of the Schrödinger and Zakharov-Shabat operators, Physica D, Tome 44 (1990), pp. 92-98 | MR: 839981 | Zbl: 0612.44005

[Ha] E.M. Haacke; R.W. Brown; M.R. Thompson; R. Venkatesan Magnetic Resonance Imaging, Wiley-Liss, New York, 1999

[Ho1] D. Hoult The principle of reciprocity in signal strength calculations - A mathematical guide, Concepts Magn. Res., Tome 12 (2000), pp. 173-187

[Ho2] D. Hoult Sensitivity and power deposition in a high field imaging experiment, JMRI, Tome 12 (2000), pp. 46-67

[Ma] J. Magland Discrete Inverse Scattering Theory and NMR pulse design (2004) (PhD. Thesis, University of Pennsylvania)

[Me] E. Merzbacher Quantum Mechanics, John Wiler \& Sons, New York, 1970 | MR: 260284 | Zbl: 0102.42701

[MR] D.E. Rourke; P.G. Morris The inverse scattering transform and its use in the exact inversion of the Bloch equation for noninteracting spins, J. Magn. Res., Tome 99 (1992), pp. 118-138

[PRNM] J. Pauly; P. Le Roux; D. Nishimura; A. Macovski Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Trans. Med. Imaging, Tome 10 (1991), pp. 53-65

[SL1] M. Shinnar; J. Leigh The application of spinors to pulse synthesis and analysis, Magn. Res. in Med., Tome 12 (1989), pp. 93-98

[SL2] M. Shinnar; J. Leigh Inversion of the Bloch equation, J. Chem. Phys., Tome 98 (1993), pp. 6121-6128

[To] H.C. Torrey Bloch equations with diffusion terms, Phys. Review, Tome 104 (1956), pp. 563-565

Cited by Sources: