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INTRODUCTION TO MAGNETIC RESONANCE

IMAGING FOR MATHEMATICIANS

by Charles L. EPSTEIN (*)

1. Introduction.

Nuclear magnetic resonance (NMR) is a subtle quantum mechanical
phenomenon that has played a major role in the revolution in medical
imaging over the last 30 years. Before being used in imaging, NMR was
employed by chemists to do spectroscopy, and remains a very important
technique for determining the structure of complex chemical compounds
like proteins. There are many points of contact between these technologies,
and problems of interest to mathematicians. Spectroscopy is an applied
form of spectral theory. NMR imaging is connected to Fourier analysis, and
more general Fourier integral operators. The problem of selective excitation
in NMR is easily translated into a classical inverse scattering problem, and
in this formulation, is easily solved. On the other hand, practical problems
in NMR suggest interesting mathematical questions in Fourier theory and
inverse scattering theory.

In this note, which is adapted from my lecture, presented in Paris
on June 27th, 2003 at the conference in honor of Professor Louis Boutet
de Monvel, I give a rapid introduction to nuclear magnetic resonance
imaging. Special emphasis is placed on the more mathematical aspects
of the problem. After presenting an empirical semiclassical description of
the basic NMR phenomenon, and the elementary techniques used in NMR

(*) Research partially supported by NSF grants DMS02-03795 and DMS02-07123, and
the Francis J. Carey term chair.
Keywords: Nuclear magnetic resonance - Imaging - Selective excitation - Inverse

scattering.
Math. classification: 78A46 - 81 V35 - 65R10 - 65R32.
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imaging, I describe the application of inverse scattering to the problem of
selective excitation.

Scant attention is paid to both the NMR spectroscopy, and the
quantum description of NMR. Those seeking a more complete introduction
to these subjects should consult the monographs of Abragam, [Ab], or
Ernst, Bodenhausen and Wokaun, [EBW], for spectroscopy, and that
of Callaghan, [Cal], for imaging. All three books consider the quantum
mechanical description of the these phenomena.

AcknovcTledgements. - I would like to thank the referee for useful
comments and Valerio Toledano for his help with the French translations.

2. Nuclear magnetic resonance.

A proton is a spin-.i particle. In NMR, the spin state of a proton is
described by a C2-valued function, Y. The intrinsic angular momentum, Jp
and magnetic moment, Mp are R3-valued quantum mechanical observables,
which transform, under the action of SO(3), by the standard 3-dimensional
representation. As there is a unique such representation, there is a

constant, 7p, such that

This constant is called the gyromagnetic ratio, see [Me]. In the physics
literature this relation is a special case of the Wigner-Eckart theorem.

As quantum mechanical observables, Jp and are operators which
act on y. In this context they are represented in terms of the Pauli spin
matrices,

with

Recall that Plank’s constant h = 1.0545 x 10-27 erg sec. If B is a magnetic
field, then the Schrodinger equation, describing the time evolution of the
spin of a proton in this field, is given by
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The expectations of an observable is a quantum mechanical model for a
measurement. The expectations of Jp and tip are defined by the inner
products:

These expectations are Revalued functions.

The Schrodinger equation implies that Jp&#x3E; satisfies the ordinary
differential equation:

In light of equation (1), this implies that the expectation of pp satisfies

If B is a static field of the form (0, 0, bo), then equation (5) implies
that precesses about the z-axis with a characteristic angular
frequency, uo = rypbo. This is the resonance phenomenon which charac-
terizes NMR. The frequency uo is called the Larmor frequency; it is

proportional to the strength of the magnetic field. Note that there are
no spatial variables in this model, i.e. the Schrodinger equation does not
involve spatial derivatives. This is a low temperature approximation that is
suitable for most medical applications of NMR.

In a classical NMR experiment, the proton would be placed in a
static magnetic field of the form Bo = (o, 0, bo). The proton would
then be irradiated by a time varying magnetic field of the form

(b1 cos wt, b1 0). The angular frequency would then be slowly
varied through a range of values. By observing the power absorbed by
this system at different frequencies, one could determine the resonant
frequency, and thereby measure ryp, see [Ab]. This is the "old" approach to
NMR spectroscopy, called continuous wave, or CW spectroscopy.

Of course one cannot obtain an isolated proton, so the constant -yp
has never been measured directly. What can actually be measured are
resonances for protons contained in nuclei of molecules. The electron cloud
in a molecule affects the magnetic field at the nuclei, leading to small shifts
in the observed resonances. This phenomenon is one of the basic ingredients
needed to use NMR spectroscopy to determine molecular structure. For

hydrogen protons in water molecules
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For hydrogen protons in other molecules, the gyromagnetic ratio is

expressed in the form ( 1 - a)q. The coefficient a is called the chemical
It is typically between 10-6 and 10-4. In the sequel we use q to

denote a gyromagnetic ratio, which can safely be thought of as that of a
hydrogen proton in a water molecule.

For purposes of comparison, the strength of the earth’s magnetic field
is about 5 x 10-5 Tesla. The strength of a standard magnet used in a
hospital MR imaging device is in the 1-3 Tesla range, and spectrometers
typically use magnets in the 5-15 Tesla range. For imaging magnets, the
resonance frequencies are in the 40-120 MHz range. That this is the

standard radio frequency (RF) band turns out to be a great piece of
luck for medical applications. The quantum mechanical energy (E = huo)
at these frequencies is too small to break chemical bonds, and so the
radiation used in MR is fundamentally "safe" in ways that X-rays are not.
Technologically, it is also a relatively simple frequency band to work in.

In most NMR imaging applications one is attempting to determine
the distribution of water molecules in an extended object. Let (x, y, z)
denote orthogonal coordinates in the region occupied by the sample,
and p(x, y, z) denote the density of water molecules at (x, y, z). The
nuclear spins in a complex, extended object interact with one another.
If the object is placed within a static magnetic field Bo (no longer assumed
to be homogeneous) then the spins become polarized leading to a net
bulk equilibrium magnetization Mo. The strength of Mo is determined by
thermodynamic considerations: there is a universal constant C so that

Here T is the absolute temperature. At room temperature, in a 1 Tesla

field, roughly 1 in 106 moments are aligned with Bo. Thus Mo is a tiny
perturbation of Bo, which would be very difficult to directly detect.

Felix Bloch introduced a phenomenological equation, which describes
the interactions of the bulk magnetization, resulting from the nuclear spins,
with one another, and with an applied field. If B is a magnetic field of the
form Bo (x, y, z) + f3(x, y, z ; t), with the time dependent parts much smaller
than Bo, then the bulk magnetization, M, satisfies the equation
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Here is the component of M, perpendicular to Bo, (called the
transverse component), and Mll is the component of M, parallel to Bo,
(called the longitudinal component). Much of the analysis in NMR amounts
to understanding the behavior of solutions to equation (8) with different
choices of B. We now consider some important special cases.

If B has no time dependent component, then this equation predicts
that the sample becomes polarized with the transverse part of M decaying
as e-t~T2 , , and the longitudinal component approaching the equilibrium
field, Mo as 1 - e-’ITI. In Bloch’s model, the spins at different points
do not directly interact. Instead, the relaxation terms describe averaged
interactions with "spin baths." This simple model is adequate for most

imaging applications. Indeed, for many purposes, it is sufficient to use the
Bloch equation without the relaxation terms. See [Bl] and [To].

Typically, Bo, the background field, is assumed to be a strong uniform
field, Bo = (0, 0, bo), and B takes the form

where G is a gradient field. Usually the gradient fields are "piecewise time
independent" fields, small relative to Bo. By piecewise time independent
field we mean a collection of static fields that, in the course of the

experiment, are turned on and off. The B1 component is a time dependent
radio frequency field, nominally at right angles to Bo. It is usually taken to
be spatially homogeneous, with time dependence of the form:

as before uo = 1bo. 

~ 

If G = 0 and 0 - 0, then the solution operator for Bloch’s equation,
without relaxation terms, is

where
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Up to the "resonance rotation" about the z-axis, at time t (the first factor
on the r.h.s. of (11)) this is simply a rotation about the x-axis through the
angle 0(t). If, on the other hand, B1 = 0 and Gt - (o, 0, £(x, y, z)), where
f (.) is a linear function, then U depends on (x, y, z), and is given by

The field Gt, defined above, is not divergence free, and therefore
cannot be a solution to Maxwell’s equations. For any linear function I there
is a solution to Maxwell’s equations of the form GE (~1~2~)? where .~1
and .~2 are also linear functions, with coefficients bounded by those of .~.
So long as .~, and therefore also £i and .~2 are small, relative to IIBoll, it is
safe to simply ignore the components of Gg orthogonal to Bo. Over the
duration of a realistic MR experiment, they have a negligible effect. In most
of the MR-literature, when one speaks of "field gradients" one is referring
only to the component in the direction of Bo of a relatively small, piecewise
time independent magnetic field.

3. A basic imaging experiment.

With these preliminaries we can describe the basic measurements in

magnetic resonance imaging. The sample is polarized, and then an RF-field,
of the form given in (10), (with /3 = 0) is turned on for a finite time T. This
is called an RF-excitation. For the purposes of this discussion we suppose
that the time is chosen so that ~(T) = 90°, see equation (12). As Bo
and B1 are spatially homogeneous, the magnetization vectors within the
sample remain parallel throughout the RF-excitation. At the conclusion of
the RF-excitation, orthogonal to Bo.

After time T, the RF is turned off, and the vector field M(x, y, z; t)
precesses about Bo, in phase, with angular velocity wo. The transverse
component of M decays exponentially. If we normalize the time so that
t = 0 corresponds to the conclusion of the RF-pulse, then

Here 0 is a fixed real phase. In this formula and in the sequel we follow
the standard practice in MR, expressing the magnetization in the form

[Mx + iMy, Mz].
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Recall Faraday’s Law: A changing magnetic field induces an electro-
motive force (EMF) in a loop of wire according to the relation

Here Qloop denotes the flux of the field through the loop of wire. A loop is an
oriented, simple closed curve, c; if E is an oriented surface with boundary
equal to c, then 4l~, the flux of M through c, is given by

here v is the outward pointing unit normal to E.

The transverse components of M are a rapidly varying magnetic field,
which, according to Faraday’s law, induce a current in a loop of wire. In
fact, by placing several such loops near to the sample we can measure a
signal of the form:

Here quantifies the sensitivity of the detector to the

precessing magnetization located at (x, y, z). From ,5‘(t) we easily obtain
a measurement of the integral of the function pblrc. By using a carefully
designed detector, birec can be taken to be a constant, and therefore we
can determine the total spin density within the object of interest. For the
rest of this section we assume that b1rec is a constant. Note that the size of
the measured signal is proportional to w5, which is, in turn, proportional
to This explains, in part, why it is so useful to have a very strong
background field. Though even with a 1.5 T magnet, the measured signal is
only in the micro-watt range, see [Hol], [Ho2].

for a constant vector

1~ _ ky, Suppose that at the end of the RF-excitation, we turn
on Gp. As the magnetic field B = Bo + Gp now has a nontrivial spatial
dependence, the precessional frequency of the spins, which equals 
also has a spatial dependence. In fact, it follows from (13) that the measured
signal would now be given by
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Up to a constant, simply the Fourier transform of p
at By sampling in time and using a variety of different linear
functions .~, we can sample the Fourier transform of p in neighborhood of 0.
This suffices to reconstruct an approximation to p.

This is an idealized model for the measurement process. The fact
that the objects being studied are often electrically conductive, leads to
noise in the measurements. The amplitude of the noise is proportional
to the bandwidth of the measured data and the volume of the sample.
The measurement apparatus itself also produces noise. From the Riemann
Lebesgue lemma, it follows that let/T2SR(t)I is decaying as t
increases. As the noise has a constant mean amplitude, there is a practical
limit on how long the signal can be sampled. This translates into a maximum
absolute frequency in Fourier space that can reasonably be measured. This
maximum absolute frequency in turn limits the resolution attainable in the
reconstructed image.

The foregoing remarks indicate that the measurements made in an
MR experiment should be regarded as samples of a random variable.
Real MR experiments are often repeated many times. As these constitute
essentially independent measurements, the noise is uncorrelated from trial
to trial. By repeating the same measurement N times, and averaging the
results, the variance is reduced by a factor of m.

The approach to imaging described above captures the spirit of the
methods used in real applications. It is however, not representative in several
particulars. It is unusual to sample the 3-dimensional Fourier transform of p.
Rather, a specially shaped RF-pulse is used in the presence of nontrivial
field gradients, to excite the spins in a thin, essentially 2-dimensional, slice
of the sample. The spins slightly outside this slice remain in the equilibrium
state. This means that any measured signal comes predominately from the
excited slice. This process is called selective excitation. In the next section

we explain a technique used to design RF-pulses to produce such a selective
excitation. It is also much more common to sample the Fourier domain
in a rectilinear fashion, rather than in the radial fashion described above.
This makes it possible to use the "fast Fourier transform" algorithm to
reconstruct the image, vastly reducing the computational requirements of
the reconstruction step. We do not consider this aspect of the problem in
any detail, the interested reader is referred to [Cal] or [Ha].
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4. Selective excitation.

As noted above, it is unusual to excite the entire sample at once.
By using carefully designed RF-pulses, applied in the presence of gradient
fields, we can excite the spins in a thin slice of the sample while leaving
those outside a slightly larger slice in the equilibrium state. In this section
we show how the design of such a pulse is actually an inverse scattering
problem for the classical Zakharov-Shabat 2 x 2-system. This fact was
first recognized in the early 1980s and appears in papers of, inter alia,
Alberto Griinbaum, M. Shinnar, and John Leigh, see [GH], [SL1], [SL2].
The approach we describe can be found in the work of Carlson, and Morris
and Rourke, see [Cal], [Ca2], [MR], and [Ep]

The Bloch equation is usually analyzed in a rotating reference
frame, related to the laboratory frame by a time dependent orthogonal
transformation of the form

We set

so that m denotes the bulk magnetization in the rotating reference frame.
Larmor’s theorem implies that if M satisfies = "’(1M x B, then m
satisfies

where

In this section we assume that Bo = (o, 0, bo ) and G = (o, 0, gz). In
this case, settingd(t) = gives

The constant value v = gz is called the offset frequency or resonance offset.
In the laboratory frame, the radio frequency magnetic field takes the form
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A magnetization profile is a unit vector valued function defined

for v e R,

In essentially all MR applications, (0,0,1)~, for v outside of
a bounded interval. The problem of RF-pulse synthesis is to find a time
dependent complex pulse envelope, (t) -I- icv2 (t), so that, if Beff(V) is given
by (23), then the solution of

with

(27)

satisfies

We have used the standard complex notation, m1 + im2, for the transverse
components of the magnetization. If wi (t) + is supported in the
interval [to , ti ] , then these asymptotic conditions are replaced by

With the offset frequency, v, interpreted as a spectral parameter, it is clear
that this is an inverse scattering problem.

In the rotating reference frame, the Bloch equation without relaxation
can be rewritten in the form

where XB is the skew symmetric matrix
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By appending two additional orthogonal columns to M this equation can
be extended to the canonical equation on SO(3) : XB. This

equation can in turn be lifted to the double cover, SU(2). The lifted

equation is known, in MR, as the spin domain Bloch equation. It is given by

with m

A simple recipe takes a solution of (32) and produces a solution
of (26). If 1jJ(ç;t) == [~i(~)~2(~)F satisfies (32), then the 3-vector valued
function

satisfies (26). If in addition

then m satisfies (27). Thus the RF-pulse synthesis problem is easily
translated into a inverse scattering problem for equation (32).

Scattering theory, for an equation like (32), relates the behavior

of 1f;(ç;t), as t ~ -oo to that of as t -~ +oo. If q has bounded
support, then, outside the support of q, the functions

are a basis of solutions for (32). If the L1-norm of q is finite, then, it is

shown in [AKNS], that (32) has solutions that are asymptotic to these
solutions as t 

THEOREM 1. finite, then, for every ~ E R, there are
unique solutions

to equation (32), urhich satisfy

The extend as analytic functions of ~ to the upper
half plane, ~~ : Im ~ &#x3E; 0~ , and 1P2-(Ç),1P1+(Ç) extend as analytic functions
of ~ to the lower half plane, ~~ : 1m ç  01.
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The proof of this theorem can be found in [AKNS].
For real values of ~, the solutions normalized at -oo can be expressed

in terms of the solutions normalized at +oo by linear relations:

The functions a, b are called the scattering coefficients for the potential q.
The 2 x 2-matrices

The scattering matrix for the potential q is defined to be

It is well known that a extends to the upper half plane as an analytic
function. On the real axis we have

These results are proved in [AKNS].

Assuming that is integrable for all j, it is shown in [AKNS]
that a has finitely many zeros in Im ~ &#x3E; 0. The function a vanishes at ~
if and only if the functions 1P1-(Ç) and ~b2+(~) are linearly dependent.
Let {Ç1,’.’, be a list of the zeros of a. For each j there is a nonzero
complex number Cil so that

If Imgj &#x3E; 0, then is not hard to show that, in this case, the functions

~~1 _ (~~ ) ~ belong to L2 (R), and therefore define bound states. We generally
assume that the zeros of a are simple and that their imaginary parts are
positive. This is mostly to simplify the exposition, there is no difhculty, in
principle, if a has real zeros or higher order zeros.

DEFINITION 1. - The pair of functions (a(~),~(~)), for ~ E R, and
the collection of Cj): j = 1, ..., N~ define the scattering data for
equation (32).
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The scattering data are not independent. If = 1,..., N~ are the
zeros of a(~) in the upper half plane, then

is an analytic function without zeros in the upper half plane. Moreover
~a(~) ~ _ ~ I on the real axis. The function log a is also analytic in
the upper half plane, and is O(lçl-1) tends to infinity.
The Cauchy integral formula therefore applies to give a representation of
log a in 1m ç &#x3E; 0 :

Exponentiating, and putting the zeros of a back in gives

see [FT]. The reflection coefficient is defined by

A priori the reflection coefficient is only defined on the real axis. Using (42)
we rewrite (46) in terms of r:

Both (46) and (48) have well defined limits as ~ approaches the real axis.

If a has simple zeros at the points {Ç1,... gN ) (so that a’(gj ) 7~ 0),
then we define the norming constants by setting

where the are defined in (43). The definition needs to be modified
if a has nonsimple zeros. The are often referred to as the

discrete data. A complete discussion of inverse scattering for the ZS-system
can be found in [Ma].
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DEFINITION 2. The function r(~) , for ~ E R, and the collection
of - 1, ... , N~ define the reduced scattering data for
equation (32).

Evidently the reduced scattering data is a function of the potential q.
In inverse scattering theory, the data (r (g) for ~ C (Ç1, C1),..., (~N, 
are specified, and we seek a potential q that has this reduced scattering
data. The map from the reduced scattering data to q is often called the
Inverse Scattering Transform or IST.

We now rephrase the RF-pulse synthesis problem as an inverse
scattering problem. Recall that the data for the pulse synthesis problem
is the magnetization profile m°°, which we now think of as a function

Using (33), the solution to the ZS-system defines a solution
m1- to (26), satisfying (27). It follows from (38) and (39) that

Therefore

As before, we use the complex notation for the transverse components
of If also satisfies (28), then it follows from (51) and (42) that

As is a unit vector valued function, we see that the reflection
coefficient r(~) uniquely determines and vice-versa. Thus the RF-

pulse synthesis problem can be rephrased as the following inverse scattering
problem: Find a potentzal q(t) for the ZS-system so that the reflection
coefficient r(E) satisfies (52) for all real E. Note that the pulse synthesis
problem makes no reference to the data connected to the bound states,
i.e. {(~?Cj)}. Indeed these are free parameters in the RF-pulse synthesis
problem, making the problem highly underdetermined.

Remark 1. - Our discussion of inverse scattering and its applications
to RF-pulse design is largely adapted from [AKNS], [MR], [PRNM] and [Ep].
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Remark 2. - In the mid 1980s Patrick Le Roux, and Jack Leigh and
Meir Shinnar introduced a method for RF-pulse synthesis now known as
the SLR method. In this approach, one looks for a potential of the special
form

The scattering data for such a potential are periodic functions. For

scattering data of this type, the inverse problem can be solved using a
simple, and efficient recursive algorithm. The potential qo is not physically
realizable, instead one uses a smoothed version, for example,

If At is sufficiently small then qo and q1 have very similar reflection

coefficients for frequencies in the interval . See [SL1],

We conclude our discussion with a formula for the energy of the pulse
envelope in terms of the reduced scattering data. The underlying results
from inverse scattering theory are due to Zakharov, Faddeev, and Manakov.

THEOREM 2. - Suppose that q(t) is a sufficiently rapidly decaying
potential for the ZS-system, with reflection coefficient r(ç), I and discrete
data l, ... ,N~, then

The proof of this result can be found in [AKNS] or [FT]. Note that
the norming constants play no role in this formula.

Combining (52) with (53) we obtain the following simple corollary.

COROLLARY 1. - If m°° is a sufficiently smooth magnetization
prolile, such that mer -I- im2° decays to zero as lçl - oo, and is absolutely



1712

integrable, then the total energy of any RF-envelope, (t) + ic,v2 (t), which
produces this magnetization profile, satisfies the estimate

Equality holds in this estimate if and only if the ZS-system with the
corresponding potential has no bound states.

From the corollary it is evident that the lowest energy RF-envelope is
obtained by solving the inverse scattering problem with no bound states.

5. Some examples and questions.

The inverse scattering problem stated in the previous section can be
solved numerically in a variety of different ways. In [Ep] we present an
algorithm using the left and right Marchenko equations. This improves
an earlier approach given in [MR] in that it allows for an essentially
arbitrary specification of bound states. Without bound states the problem
is numerically well behaved; if there are bound states one is faced with

solving highly ill conditioned linear systems. A very effective approach
to this has been found, in collaboration with Jeremy Magland, and is

described in his PhD thesis, see [Ma]. In this section we present solutions
to some typical selective excitation problems, and then consider some open
questions.

As described in Section 3, a fundamental problem is to flip the
magnetization 90° for offset frequencies in a certain interval, [ço, ~1], while
leaving those outside a slightly larger interval fixed. The "ideal" reflection
coefficient is given by ri (~) = (~). The mapping properties of the IST
are quite similar to those of the Fourier transform. In particular, the
quantitative smoothness of the reflection coefficient determines the rate of

decay of the potential and vice versa, see [BC]. In real applications it is

important to have a potential with small effective support; this translates
into a requirement to smooth ri.

Example 1. - For our first example we use piecewise polynomial
functions, with three continuous derivatives, to design pulses. Figure 1 (a)
shows several such approximations to r- and Figure 1 (b)-(d) shows
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the corresponding minimum energy (no bound states) potentials. The
relationship between the quantitative smoothness of r and the effective
support of q is quite apparent in these examples.

Example 2. - For our next example we consider the effects of adding
bound states. We use the rational function (1 + ç18)-1 as an

approximation to rz. We use 9 bound states with ~9 I given by
the poles of r18 in the upper half. For the norming constants, we use the
residues of r18 at the corresponding points. As is well known, this produces
a potential supported in (0,00]. In the MR-literature this is called a self
refocused pulse. The pulse and its corresponding reflection coefficient are
shown in Figure 2.

The physical problem of selective excitation fixes only the reflection
coefficient. The discrete data for the inverse scattering problem are free
parameters. In medical applications it is usually important to keep the
total energy and maximum amplitude of the pulse small; this makes

the minimum energy pulse an attractive choice. There are however other
considerations which might make a pulse with higher energy more useful.
The main desideratum is to reduce the "effective" support of the potential.
In real applications one might truncate the potential produced by the IST
to obtain a function of the form w(t)q(t), with support in a finite interval.
This leads one to ask the following questions:

1) For a given reflection coefficient r, is it possible to choose discrete
Cj)1, so that the potential with this reduced scattering data has

arbitrarily small effective support?

2) For a given reflection coeffcient r, is it possible to choose discrete
so that the effective support of the potential with this

reduced scattering data is reduced by a definite factor over that of the
minimum energy potential, e.g., cut in half?

3) Is there a nonlinear Heisenberg uncertainty principle for the 1ST?

These problems beg the question of what is meant by effective support.
The main goal is to attain a good approximation to the given reflection
coefficient, r. Hence, we say that an interval I contains the effective support
of q if there is a window function w supported in I so that rw is a good
approximation to r. From experiments we have done, it is fairly clear that,
for minimum energy pulses, the effective support can be described as an
interval where the potential assumes at least some fraction of its maximum
value. On the other hand, for pulses with bound states, parts of the pulse
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(a) A plot showing the different approximations to ri used to design the
potentials in (b)-(d).
(b) Potential with reflection coefficient supported in (-1.1, 1.1).
(c) Potential with reflection coefficient supported in (-1.5, 1.5).
(d) Potential with reflection coefficient supported in (-3, 3).

Figure 1. Several minimum energy potentials which approximate
a 90° flip. Note the different time scales used in the plots (b)-(d).
A smoother reflection coefficient produces a potential with smaller
effective support.

with very small relative amplitude seem to be important for attaining a
good approximation to r. It is therefore an interesting question to give
sufficient conditions for I to contain the effective support of q. Questions of
this sort appear in papers of Grfnbaum, see [Gr2], [Grl]. Another problem
in the application of RF-pulses is the lack of spatial homogeneity across
the extent of the sample. One therefore would like to find discrete data

which "stabilizes" the effect of the pulse under small errors in
either the amplitude or phase.
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’B / , /

(a) A plot the reflection coefficient produced by the potential shown in (b).
(b) Potential with reflection coefficient r18 and bound states corresponding
to poles of r18.

Figure 2. A self refocused pulse. Note the much large amplitude,
by comparision to the minimum energy pulses.
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