[L'opérateur de Dolbeault sur les surfaces hermitiennes de spin]
On démontre l'annulation du noyau de l'opérateur de Dolbeault sur la racine carrée du fibré canonique d'une surface hermitienne de spin avec courbure scalaire positive. On obtient des minorations pour la première valeur propre de cet opérateur, dans le cas où la courbure scalaire conforme est non-négative.
We prove the vanishing of the kernel of the Dolbeault operator of the square root of the canonical line bundle of a compact Hermitian spin surface with positive scalar curvature. We give lower estimates of the eigenvalues of this operator when the conformal scalar curvature is non -negative.
Keywords: hermitian surfaces, Dirac operator, Dolbeault operator, twistor spinors
Mot clés : surfaces hermitiennes, opérateur de Dirac, opérateur de Dolbeault, spineurs twisteurs
Alexandrov, Bodgan 1 ; Grantcharov, Gueo 2 ; Ivanov, Stefan 2
@article{AIF_2001__51_1_221_0, author = {Alexandrov, Bodgan and Grantcharov, Gueo and Ivanov, Stefan}, title = {The {Dolbeault} operator on {Hermitian} spin surfaces}, journal = {Annales de l'Institut Fourier}, pages = {221--235}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {1}, year = {2001}, doi = {10.5802/aif.1822}, zbl = {0987.53011}, mrnumber = {1821075}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1822/} }
TY - JOUR AU - Alexandrov, Bodgan AU - Grantcharov, Gueo AU - Ivanov, Stefan TI - The Dolbeault operator on Hermitian spin surfaces JO - Annales de l'Institut Fourier PY - 2001 SP - 221 EP - 235 VL - 51 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1822/ DO - 10.5802/aif.1822 LA - en ID - AIF_2001__51_1_221_0 ER -
%0 Journal Article %A Alexandrov, Bodgan %A Grantcharov, Gueo %A Ivanov, Stefan %T The Dolbeault operator on Hermitian spin surfaces %J Annales de l'Institut Fourier %D 2001 %P 221-235 %V 51 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.1822/ %R 10.5802/aif.1822 %G en %F AIF_2001__51_1_221_0
Alexandrov, Bodgan; Grantcharov, Gueo; Ivanov, Stefan. The Dolbeault operator on Hermitian spin surfaces. Annales de l'Institut Fourier, Tome 51 (2001) no. 1, pp. 221-235. doi : 10.5802/aif.1822. https://aif.centre-mersenne.org/articles/10.5802/aif.1822/
[1] Self-dual Hermitian surfaces, Trans. Amer. Math. Soc., Volume 349 (1996), pp. 3051-3063 | DOI | Zbl
[2] A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl., Volume 35 (1957), pp. 235-249 | MR | Zbl
[3] Clifford modules, Topology, Volume 3 (Suppl.1) (1964), pp. 3-38 | DOI | MR | Zbl
[4] Twistor and Killing spinors on Riemannian manifolds (Seminarbericht), Volume 108 (1990) | Zbl
[5] A local index theorem for non-Kähler manifolds, Math. Ann., Volume 284 (1989), pp. 681-699 | DOI | MR | Zbl
[6] A note on hyperhermitian four manifolds, Proc. Amer. Math. Soc., Volume 102 (1988) no. 1, pp. 157-164 | MR | Zbl
[7] Der erste Eigenwert des Dirac operators einer kompakten Riemannischen Manningfaltigkeit nichtnegativer Skalarkrümung, Math. Nachrichten, Volume 97 (1980), pp. 117-146 | DOI | MR | Zbl
[8] The classification of -dimensional Kähler manifolds with small eigenvalue of the Dirac operator, Math. Ann., Volume 295 (1993), pp. 565-574 | DOI | MR | Zbl
[9] Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris, Sér. A, Volume 285 (1977), pp. 387-390 | MR | Zbl
[10] Fibrés hermitiens à endomorphisme de Ricci non négatif, Bul. Soc. Math. France, Volume 105 (1977), pp. 113-140 | Numdam | MR | Zbl
[11] La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., Volume 267 (1984), pp. 495-518 | DOI | MR | Zbl
[12] Hermitian connections and Dirac operators, Bol. U. M. I. Sér. VII, Volume XI-B, supl. 2 (1997), pp. 257-289 | MR | Zbl
[13] Opérateurs de Dirac sur le variétés riemanniennes : minoration des valeurs propres (1984) (Thèse de 3e Cycle, École Polytechnique)
[14] Harmonic spinors, Adv. Math., Volume 14 (1974), pp. 1-55 | DOI | MR | Zbl
[15] An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds of positive scalar curvature, Ann. Glob. Anal. Geom., Volume 4 (1986), pp. 291-325 | DOI | MR | Zbl
[16] The first eigenvalue of the Dirac operator on Kähler manifolds, J. Geom. Phys., Volume 7 (1990), pp. 447-468 | MR | Zbl
[17] Properties of Kählerian twistor-spinors and vanishing theorems, Math. Ann., Volume 293 (1992), pp. 349-369 | DOI | MR | Zbl
[18] Structures de Weyl admettant des spineurs parallèles, Bull. Soc. Math. France, Volume 124 (1996) no. 4, pp. 685-695 | Numdam | MR | Zbl
[19] Complex structures on Riemannian four-manifolds, Math. Ann., Volume 309 (1997), pp. 159-177 | DOI | MR | Zbl
[20] Some curvature properties of complex surfaces, Ann. Mat. Pura Appl., Volume 132 (1982), pp. 1-18 | DOI | MR | Zbl
[21] Parallel spinors and parallel forms, Ann. Glob. Anal. Geom., Volume 7 (1989), pp. 59-68 | DOI | MR | Zbl
Cité par Sources :