
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Bodgan ALEXANDROV, Gueo GRANTCHAROV & Stefan IVANOV

The Dolbeault operator on Hermitian spin surfaces
Tome 51, no 1 (2001), p. 221-235.

<http://aif.cedram.org/item?id=AIF_2001__51_1_221_0>

© Association des Annales de l’institut Fourier, 2001, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2001__51_1_221_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


221

THE DOLBEAULT OPERATOR ON

HERMITIAN SPIN SURFACES

by B. ALEXANDROV, G. GRANTCHAROV
&#x26; S. IVANOV (*)

1. Introduction.

The well-known vanishing theorem of Lichnerowicz says that there
are no harmonic spinors on compact spin manifolds of non-negative non-

identically zero scalar curvature, i.e. the kernel of the Dirac operator
vanishes. When the scalar curvature is identically zero the harmonic spinors
are actually parallel. A complete classification of the complete simply
connected irreducible spin manifolds admitting a parallel spinor is given by
Hitchin [14] and Wang [21]. When the scalar curvature is strictly positive
one may try to find an estimate for the first eigenvalue of the Dirac operator.
This is done by Friedrich [7]. The estimate is expressed in terms of the scalar
curvature and the limiting manifolds are characterized by the existence of
a real Killing spinor.

It is well-known (see [14]) that in the Kahler case the Dirac oper-
ator coincides with the Dolbeault operator D = Ui(8 + 8* ) of K 2 - the
square root of the canonical line bundle .K which determines the spin struc-
ture. Applying the Hodge theory to the corresponding Dolbeault complex
Hitchin [14] has shown that on a compact Kahler spin manifold the space

(*) The authors are supported by Contract MM 809/1998 with the Ministry of Science
and Education of Bulgaria and by Contract 238/1998 with the University of Sofia "St.
Kl. Ohridski".

Keywords: Hermitian surface - Dirac operator - Dolbeault operator - Twistor spinors.
Math. classification: 53C15 - 53C25 - 53B35.
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of harmonic spinors can be identified with the holomorphic cohomology
H*(M,O(K4)). So, if a compact Kahler spin manifold admits a Rieman-
nian metric of strictly positive scalar curvature then all cohomology groups
H* (M, O(K4)) vanish by the Lichnerowicz theorem.

The purpose of this note is to treat problems similar to the above
mentioned in the case of the Dolbeault operator on compact Hermitian

spin surfaces.

Our first observation is the following

THEOREM 1. - Let (M, J) be a compact complex spin surface
admitting a Hermitian metric of non-negative non-identically zero scalar
curvature. Then H’(M, C7(K2 )) = 0, i = 0,1, 2.

Proof. - By arguments similar to those in Proposition 1.18 in [11]
(see also Lemma 3.3 in [1]) the existence of a Hermitian metric of non-
negative non-identically zero scalar curvature implies that all the pluri-
genera of (M, J) vanish. Hence, O(K4)) = 0. By the Serre duality
H2(M,O(K4)) = 0. By the Lichnerowicz vanishing theorem the index
of the Riemannian Dirac operator D vanishes. But since both D and the
Dolbeault operator D have the same principal symbol, they have the same
index. Thus,

and therefore O(K2 = 0. 0

In view of this result the following questions are natural:

Is there an estimate for the first eigenvalue of the Dolbeault operator
on Hermitian spin surfaces of positive scalar curvature? If the answer is
"Yes", describe the limiting manifolds, i.e. the manifolds for which the

estimate is attained.

For Kahler manifolds the above questions are treated in terms of
the Dirac operator. However, according to the result of Hijazi [13] the
estimate of Friedrich [7] is not sharp on a Kahler manifold, since it admits
a parallel form. A better estimate for the first eigenvalue of the Dirac
operator on compact Kahler spin manifolds with strictly positive scalar
curvature is found by Kirchberg [15], [16] and the limiting manifolds are
characterized by the existence of Kahlerian twistor spinors. In the 4-

dimensional case (in which we are interested in this paper) the classification
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of the limiting Kahler manifolds is given by Friedrich [8] using detailed
study of the Kahlerian twistor equations. So, the complete answer to both
of the questions for compact Kahler spin surfaces is known.

In the present paper we give a complete answer to the questions
under the stronger assumption of non-negative conformal scalar curvature.
We recall that the conformal scalar curvature of a Hermitian surface is

the scalar curvature of the corresponding Weyl connection. In the case of
strictly positive conformal scalar curvature we answer to the first question
completely and partially to the second.

Our considerations are based on Bochner type calculations using the
set of canonical Hermitian connections E R, described by Gauduchon

[12]. Among these connections an important role plays the Bismut connec-
tion. This is the unique Hermitian connection with skew-symmetric torsion
(cf. [12]) and is used by Bismut [5] to express the Weitzenbock formula for
the Dolbeault operator. To treat the limiting manifolds we consider twistor
equations with respect to the canonical Hermitian connections.

More precisely, we prove

THEOREM 2. - Let (M, g, J) be a compact Hermitian spin surface
of non-negative conformal scalar curvature. Then the first eigenvalue A of
the Dolbeault operator satisfies the inequality

where s is the scalar curvature of g. Further, the following conditions are
equivalent:

(i) There is an equality in (1).

(ii) There exists a parallel spinor in with respect to the Bismut
connection (hence the conformal scalar curvature is identically zero) and
the scalar curvature is constant.

(iii) (M, g, J) is a K3-surface or a flat torus with their hyper-Kahler
metrics or a coordinate quaternionic Hopf surface with a metric of constant
scalar curvature in the conformal class of the standard locally conformally
flat metric.

Notice that the manifolds listed in (iii) are the only compact 4-
dimensional hyper-Hermitian manifolds with constant scalar curvature

(see [6]).
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THEOREM 3. - Let (M, g, J) be a compact Hermitian spin surface
of positive conformal scalar curvature k. Then the first eigenvalue A of the
Dolbeault operator satishes the inequality

The equality in (2) is attained iff k is constant and there exists a

Hermitian twistor spinor with respect to the Hermitian connection ~-3.
In this case (M, g, J) is locally conformally Kähler.

Note that on Kahler surfaces the estimate (2) coincides with that
of [16].

In the last section we give examples of non-Kahler Hermitian surfaces
for which the limiting case of the inequality (2) is attained.

2. Preliminaries.

Let (M, g, J) be a Hermitian surface with complex structure J and
compatible metric g. Denote by Q the Kahler form, defined by Q(X, Y) =
g(X, JY). The volume form of g is c,~ - !O A S2. It is well-known that

dQ = B A Q, where 0 = 6Q o J is the Lee form of (M, g, J). Recall that
(M, g, J) is Kahler iff 0 = 0; locally conformally Kahler iff 0; globally
conformally Kahler iff 0 = df for a smooth function f on M (in this
case e-f g is a Kahler metric). Let V be the Levi-Civita connection of
g and R and s - its curvature tensor and scalar curvature respectively (for
the curvature tensor we adopt the following definition: R(X, Y, Z, W) =

Recall that the *-Ricci tensor p* and the
*-scalar curvature s* of M are defined by

where here and in the following ~ei ~ is a local orthonormal frame of the

tangent bundle TM and is its dual frame.

We also have (cf. [20])
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(here and in the following we denote by (.,.) and the pointwise inner
products and norms and by (.,.) and 11 - the global ones respectively).
Note that on a Kahler manifold the Ricci and *-Ricci tensors coincide; in
particular s = s*.

Now consider the Weyl connection determined by the Hermitian
structure on M, i.e. the unique torsion-free connection ~W such that

~W g = e ® g. The conformal scalar curvature k is defined to be the scalar
curvature of Equivalently, k is the *-scalar curvature of the self-dual
Weyl tensor W+, multiplied by 2. The Weyl connection is invariant under
conformal changes of the metric since if g = ef g, then 0 = 0 + df. Hence,

We also have

(5)

Recall the definition of the set of canonical Hermitian connec-

tions [12]: For a real number t the connection V~ is defined by

or equivalently

where 0* is the vector field dual to 9.

The canonical Hermitian connections form an affine line (degenerating
to a point in the Kahler case) determined by V° - the projection of the Levi-
Civita connection into the affine space of all Hermitian connections, and

B71, which coincides with the Chern connection. In the sequel important
role will be played also by the connections B7-1 (considered by Bismut [5])
and ~-3.

¿From now on we assume that (M, g, J) is a spin manifold. Denote

by EM its spinor bundle and let p : T*M 0 EM 2013~ EM be the Clifford
multiplication. Identifying T*M and TM via the metric we shall also
consider J1 as a map from TM 0 EM into EM. We shall usually write
the Clifford multiplication by juxtaposition, i.e.
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Since (M, g, J) is a Hermitian manifold, the choice of a spin structure
on it is equivalent to the choice of a square-root K2 of the canonical line
bundle K [14]. Thus for the corresponding spinor bundle we have

where A 0,. M = A 0,0 M si A 0,1 M si A 0,2 M. In particular, the spinor bundle
~M splits as follows:

where £rM = A’,’M 0 K" 2 is the eigensubbundle with respect to the
eigenvalue (2 - 2r)i of the Clifford action of the Kahler form Q on EM
(cf. [15]).

The half-spinor bundles are the eigensubbundles of the volume
form w with respect to its eigevalues +1 and we have

Let pr : EM 2013~ E,M, r = 0,1, 2, be the projections with respect
to the splitting (8). For convenience we denote E-iM = 3 M = 0 and
p-1 = p3 = 0. Recall [15] that for X E TM

as endomorphisms of ~ M and for V) 

where

Any metric connection in the tangent bundle gives rise to a metric
connection in the spinor bundle and it is easy consequence of (6) that

for ). In particular, we have

for This follows from (12) and

The Kahler form SZ is parallel with respect to any Hermitian connection,
so the Hermitian connections preserve the splitting (8). Recall also [3]
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that there is an antilinear bundle map j : EM 2013~ EM which commutes
with the Clifford multiplication by real vectors, j 2 == -1, j is parallel
with respect to any metric connection on M and preserves the Hermitian
inner product on ~ M . In particular, j provides an antilinear isomorphism
between ~o M and ~2 M.

The Dirac operator of the Levi-Civita connection D : r(EM) 2013~

F(EM) is defined by D = J1 o V, or equivalently, by ~4 1 
The Dirac operators D’ of the connections V~ are defined in similar way
by replacing V with B7t.

The identification (7) shows that the Dolbeault operator 0 == -j2(ð+
of I~ 2 also acts on sections of the spinor bundle. As shown in [121

be the orthogonal projections. It is easy to see that

were and Ja is the dual form of

The twistor operators of the Hermitian connection V~ are the differ-
ential operators

defined by

By analogy with the Kahler twistor spinors of [16] we shall call the spinors
in the kernel of PT Hermitian twistor spinors with respect to We are

particularly interested in Po . It follows from (17) that
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and also

In the 4-dimensional case the Weitzenbock formula for the Dolbeault

operator ([5], Theorem 2.3) reads as follows:

where A’ = (V~)*V~ is the spinor Laplacian of the connection B7t.
Recall that a non-exact Weyl connection (i.e. 0 is not exact) on a

n-dimensional conformal spin manifold (M, [g]) is not a metric connection
for any metric g E [g], so it cannot be lifted to a connection in the principal
Spin(n)-bundle determined by g. But it can be lifted to a connection in the
principal C Spin(n)-bundle determined by the conformal class [g], where
C Spin(n) - R+ x Spin(n) is the conformal spinorial group (cf. [12]).
The bundles of spinors of weight k, k E R, are associated with the latter
principal bundle and therefore the Weyl connection gives rise to connections
on them. When a metric g E [g] is fixed, the bundles of spinors of weight
1~ could be identified with the bundle of spinors ~M corresponding to this
metric and in this way the Weyl connection gives rise to connections on
EM (cf. [12]). For example, the connection on EM, considered in [18], is
obtained in this way from the Weyl connection, acting on sections of the
bundle of spinors of weight 0. This will be used in the proof of Theorem 2.

3. Proof of Theorem 2 and Theorem 3.

Throughout this section (M, g, J) is a compact Hermitian spin sur-
face.

LEMMA 1. - 0 be an eigenvalue of the Dolbeault opera-
tor 0. Then there exists an eigenspinor 1/;0 E r(oM) for the eigenvalue A2
of 02 .

Proof. - It is clear that

and , Hence, if 0 is an eigenspinor
of 0 for A and 0 = 00 + ’l/Jl + ’l/J2 with respect to the decomposition (8) then
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(i.e. + and both V)o + and IP2 are

eigenspinors for 0 with respect to A. Moreover, 00, are

eigenspinors for 02 with respect to ~2 . It follows by (16) that 0 o j = j o 11
and therefore j02 E r(~oM) is also an eigenspinor for 02 with respect to
A 2. Since by (21) ’l/Jo i- 0 or u/2 # 0, Lemma 1 is proved. 0

Proof of Theorem 2. - When 0 the inequality (1) is

trivially satisfied. So we can assume that inf m s &#x3E; 0. Hence it follows

from Theorem 1 that A # 0 and by Lemma 1 we have an eigenspinor
00 E F(EOM) of 02 with respect to A 2. Thus (20) yields

By (3) we have, and since k &#x3E;- 0, i.e. s* &#x3E;_ 3 s, we obtain
that a2 &#x3E; 6 inf m s.

Now we proceed with the proof of the second part of the theorem.
Note that the Bismut connection, restricted to sections of ~+M, coincides
with the connection considered in [18]. Hence, as proved in [18], a parallel
spinor in E+M with respect to the Bismut connection gives rise to a hyper-
Hermitian structure on M and thus M is conformally equivalent to one
of the manifolds in (iii) (cf. also [6]). In particular, it follows that M is

anti-self-dual, which is equivalent to k = 0 and d0 = 0 (cf. for example
[1]). Conversely, any manifold conformally equivalent to those listed in (iii)
admits a parallel spinor in ~+M (and hence in ~oM) with respect to the
Bismut connection in the spin structure given by the trivial square-root of
the canonical line bundle. This proves the equivalence of (ii) and (iii) since
the hyper-Kahler metrics on a K3-surface or a torus are the only metrics
of constant scalar curvature in their conformal classes.

Now we prove the equivalence of (i) and (ii).
When s &#x3E; 0 the calculations in the first part of the proof show that

there is an equality in (1) iff s = const, k = 0 and 0. But as

shown above, V-100 = 0 implies 1~ = 0 and thus (i) and (ii) are equivalent
when s &#x3E; 0.

When inf M s = 0 Theorem 1 shows that the equality in (1) is possible
only if s = 0. Hence, by (5) and k &#x3E; 0 we have s* &#x3E; 0. Integrating (3) we
obtain that 0 = 0, i.e. (M, g, J) is Kahler. Therefore (20) (which in the
Kahler case coincides with the usual Lichnerowicz formula and the Bismut

connection coincides with the Levi-Civita connection) yields that 02V; == 0
iff ~-1 ~ - 0. Hence it remains to show that if there exists a parallel
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spinor, then there exists a parallel spinor in E+M. But (M, g, J) is anti-

self-dual (since k = s = 0 and dO = 0) and thus its signature a(M) x 0.
Since a(M) = -8 ind(D) = -8ind(D), it follows that 0, i.e.

dim dim Ker(DIE-m).
Thus the equivalence of (i) and (ii) is proved. 0

We start the proof of Theorem 3 by two lemmas.

Proof. - It follows by (18) that

But

Thus

since . . Hence,

Using (15) and (16) we obtain

and hence

By (13) we get
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Thus,

It is easily seen that

for arbitrary 1-form a. Hence

Substituting this equation in (27) and using (24) and the fact that

we obtain

Now (22) follows by substituting (25) and (28) in (23), integrating and
using (20) to express

LEMMA 3. - Let = 0, F(EOM) is non-identically
zero 1. Then (M, g, J) is locally conformally Kihler.

Proof. - By (19) we 0 for Z E Tl,o M. Hence, the
curvature
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It follows by Lemma 2 that the principal symbol of (Pg) *Pg is a multiple
of the identity and thus by a theorem of Aronszjan [2] 0 on dense

open subset of M. Since EOM is a line bundle, it follows that the curvature
form Rt is a ( 1,1 )-form on this dense open subset and hence on the whole
M. By (13) we obtain

But is the curvature of the Chern connection and hence is also a (1,1)-
form. Thus dJO is a (1, 1 )-form and therefore dO is a ( 1,1 )-form. Since dO
is pointwise orthogonal to Q, it follows that dO is anti-self-dual and the

compactness of M implies that d0 = 0 , i.e. (M, g, J) is locally conformally
Kahler. D

Proof of Theorem 3. - By a theorem of Gauduchon [9] there always
exists a metric g in the conformal class of 9 whose Lee form is co-closed.
By (4) k &#x3E; 0 and by (3) and (5) it follows that 9 &#x3E; 0. Hence, Theorem 1
tells us that Ker(0) - {0}, Le. À =1= 0. Thus, by Lemma 1 there exists an
eigenspinor 00 z of 02 with respect to A 2- Applying Lemma 2
with t = -3 we obtain

But it follows by (3) and (5) that s - 3b8 - 2 ~8~2 = k. Thus

Hence, ~2 &#x3E; 2 infm k and the equality is attained iff 0 and

k = const.

The last statement of the theorem follows from Lemma 3. 0

Remark. - In Lemma 3 we found a restriction for a compact Her-
mitian spin surface to admit a Hermitian twistor spinor with respect to

any of the canonical Hermitian connections except the Chern connection.
In the latter case, one can see that under the additional assumptions of bl
odd and positive fundamental constant C(M, g) (see the definition in ~10~ )
a compact Hermitian spin surface admitting a Hermitian twistor spinor
with respect to the Chern connection is biholomorphic to a primary Hopf
surface. To prove this notice that the positivity of C(M, g) implies by the
Gauduchon’s plurigenera theorem [10] that all the plurigenera of (M, J)
vanish and since b, is odd (M, J) must be of type VIIO. A Hermitian
twistor spinor with respect to the Chern connection is an antiholomorphic
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section 0 of K1/2. Equivalently, jo is a holomorphic section of K- 2 and
hence H°(M, C~(K-1)) ~ 0. Now the statement follows by the fact that M
is spin and arguments similar to those in Corollary 3.12 in [19].

4. Examples.

In this section we give non-Kahler examples of Hermitian surfaces for
which the limiting case in Theorem 3 is attained.

Recall (cf. [4]) that under a conformal change of the metric g = ef g
of a spin manifold (M, g) there is an identification - of the spinor bundle
~M of (M, g) and the spinor bundle EM of (M, g) such that

where 0 E E is the spinor corresponding to 1/;, X E TM,
and V and are the Levi-Civita

connections of g and g respectively.

Now, if (M, g, J) is a Hermitian surface, the Kahler form of (M, g, J)
is ~2 = efn and it follows from (30) that

Thus the eigensubbundles ErM of Q correspond to the eigensubbundles
of ~2. The Lee form of 9 is 0 + df and hence by (13), (29)-(32) we

obtain
- - 1

LEMMA 4. - Let (M, g, J) be a Hermitian spin surface and

~ = ef g. If r(EoM) is a Hermitian twistor spinor with respect to
Vt, then Hermitian tvvistor spin or with respect to V .

Proof. - Easy consequence of (19) and (33). 0

Now let M be one of the manifolds 6~ x ,S‘2 and T 2 x ,52, where ,S’2
is the 2-dimensional sphere and T2 is 2-dimensional flat torus. With their
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standard product metrics these manifolds are limiting Kahler manifolds, i.e.
they are Kahler and (2) is equality for them (cf. [16] or [8]). The limiting
Kahler manifolds are characterized by constant positive scalar curvature
and existence of a Kahlerian twistor spinor, i.e. an antiholomorphic section
of K 2 - the square root of the canonical line bundle which determines the
spin structure (cf. [17] or Theorem 3 above).

We can change conformally the metric of the first factor of M so to
obtain a metric g on M of positive non-constant scalar curvature s. This
metric will be Kahler with respect to the same complex structure J and
M will still admit a Kahlerian twistor spinor. Now we change the metric

conformally by 9 = sg. Since in the Kahler case the connections V~ coincide
with the Levi-Civita connection, it follows from Lemma 4 that on (M, g, J)
there exists a Hermitian twistor spinor with respect to V~ (and in particular
-3) and by (4) the conformal scalar curvature is constant: k = 1. Thus
by Theorem 3 the inequality (2) turns into an equality for the non-Kahler
Hermitian surface (M,~, J).
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