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INJECTIVE MODELS OF G-DISCONNECTED
SIMPLICIAL SETS

by Marek GOLASINSKI

The purpose of this paper is to extend the rational homotopy theory
on G-disconnected simplicial sets being not necessary of finite G-type.

Sullivan [12] introduced the rational de Rham theory for connected
simplicial complexes and applied it to show that the de Rham algebra A^-
of Q-differential forms on a simply connected complex X of finite type
determines its rational homotopy type. The central results of Sullivan's
theory has been generalized by Triantafillou (see [13], [15]) to equivariant
context but under the assumption that a simplicial set X of finite type
with a finite group G action is G-connected and nilpotent, i.e. the fixed
point simplicial subsets X11 are nonempty, connected, and nilpotent for
all subgroups H C G. In this case not only A^ with the induced G-
action are considered but also the de Rham algebras A^n of X11 for all
subgroups H C G. It means that a functor A^ on the category 0(G)
of canonical orbits is studied and its componentwise injectivity is the key
observation for the existence of an equivariant analog of Sullivan's minimal
models. Unfortunately, G-connectedness is a much more severe restriction
on a G-simplicial set than connectedness is in the nonequi variant context,
since it is impossible to break up a G-simplicial set into "connected
components", as one would do nonequivariantly. Therefore, instead of the
orbit category 0(G), we have to work in this paper over the category
0(G, X) with one object for each component of each fixed point simplicial
subset X^1 of a G-simplicial set X for all subgroups H C G.

This paper grew out of our attempt to understand and generalize

Key words: Differential graded algebra — de Rham algebra — E /-category — Grothendieck
construction — i-minimal model — Linearly compact (complete) fc-module — Postnikov
tower — Simplicial set.
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the Ph.D. thesis by B.L.Fine (see [4], the Chicago University, 1992). It
is not clearly written there, but the used methods and obtained results
can be only applied for G-CW-spaces of finite G-type and finitely G-
connected (i.e. all its fixed point subspaces own a finite number of
components). Namely, the category 0(G,X) is infinite in general, even
for a G-GW-space X of finite G-type. Put k-Mod' (resp. A:-Mod) for the
category of ^-modules (resp. finitely generated) over a field k. It does not
arise from this thesis if the category of functors 0(G^X) —> fc-Mod" or
0(G,X) —> A;-Mod is considered. However, none of them is appropriate to
be applied for any (even of finite G-type) G-GTV-space. In the category
of functors 0(G,X) —^ k-Mod-^ sufficiently many injective objects do not
exist. Moreover, in the category of functors 0(G,X) —> A;-Mod the tensor
product of two injective objects is not injective. These two properties are
crucial to make further steps in the Ph. D. thesis by B.L. Fine for studies of
(even of finite G-type) G-GTV-spaces.

Here is a brief summary of the paper. In Section 1 we investigate
the category H-Mod of covariant functors on a small category I to the
category of /c-modules over a field k. This approach is inspired by a
category of functors on categories related to the orbit category 0(G)
determined by a finite group G. For simplicity we replace these categories
by an £7-category I {i.e. a small category such that all endomorphisms are
isomorphisms). We introduce basic notions and present some prerequisites
about injective objects in the category H-Mod.

Unfortunately, injective H-modules are not preserved by tensor
product. Therefore, we move to the category of functors from an El-
category 1 to the very useful but rather neglected category k-Mod° of
linearly compact ^-modules considered already by Lefschetz in [10]. We
recall the basic terminology in the category fc-Mod°, define complete tensor
product and prove Proposition 1.4 on its behaviour on linearly compact
^-modules. Then complete tensor and symmetric powers are defined in
the category of graded linearly compact H-modules and some of their
properties are stated in Remark 1.6.

In Section 2 we extend our previous investigations on the category
1-DGAk of functors from an EJ-category I to the category DGAk of
differential graded algebras over a field k. For a complete injective (as
a H-module) H-algebra A and a complete H-module M we consider its
cohomologies ft* (A), H*{A^M) and a convergent spectral sequence

E^ = Ext^M, H^A)) =^ H^^A, M)
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which is a crucial tool in the sequel.

Then, we generalize the results of [13] and present an existence of an
injective minimal model for a complete injective kl- algebra A^ for an EI-
category I. The above spectral sequence plays a key role in a construction
of this model and for this reason the injectivity of A (as a H-module) is
necessary. On the other hand, by [8] for any complete H-algebra A there
exists a complete injective H-algebra Q(A) and a natural cohomology
isomorphism A —^ Q(A). First, we show in Propositions 2.3 and 2.4 that
injective minimal kl- algebras behave (up to homotopy) as cofibrant ones.
Then we prove in Theorem 2.8 an existence and uniqueness of an injective
minimal model A^^ of a complete injective kl- algebra A.

Our object in Section 3 is to apply the results assembled in the previous
sections to the category G-SS of G-simplicial sets, where G is a finite group.
We show in Proposition 3.3 that on the de Rham algebra A^ of rational
polynomial forms on a simplicial set X there is a natural complete linear
topology. Next we observe that much of algebraic-topological information
on a G-simplicial set X is encoded in the cofinite ̂ -category 0(G, X) with
one object for each component of each fixed point simplicial subset X^,
for all subgroups H C G.

With any G-simplicial set X, we associate the de Rham Q(9(G,X)-
algebra A^^ where Q is the field of rationals; its injectivity was presented
in [6]. We show in Lemma 3.6 that the category of injective linearly
compact kO{G^ X)-modules is closed with respect to the complete tensor
product and deduce in Theorem 3.7 an existence of an injective minimal
model for the de Rham QO(G,X)-algebra Ay of a G-simplicial set X.
Finally, we state Theorem 3.11 as the main result and describe the rational
homotopy type of a nilpotent G-simplicial set X by means of injective
minimal model of the de Rham algebra A^.

The author wishes to express his indebtedness to Professor
S. Balcerzyk for carefully reading the manuscript and very useful dis-
cussions. He is also grateful to the referee for helpful suggestions.

1. Injective modules over a category.

Let A; be a field. The category of (left) ^-modules is denoted by
A;-Mod. If I is a small category then a covariant functor I —> A;-Mod is called
a left kl-module and the functor category of left kl- modules is denoted
by H-Mod, and called the category of left H-modules. We also have the
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category of contravariant functors I -^ fc-Mod, alias right kl-modules and
denoted by Mod-H.

The notions submodule, quotient module, kernel, image and cokernel
for H-modules are defined object-wise. For each object I c Ob(I) we have
the right H-module

H(-,J):I—>k-Mod

determined by the Yoneda functor I(-, I ) and similarly, the left H-module
H(J,-). Protective and injective H-modules are defined by usual lifting
properties. Observe that the category of projective right H-modules is
isomorphic to the category of all injectives in the category of all covariant
functors from 1 to the category A^-Mod013 dual to A;-Mod.

In various categories considered in algebraic topology endomorphisms
are isomorphisms. Therefore, let I be an El-category, which by definition,
is a small category in which each endomorphism is an isomorphism.
Following [II], we define a partial order (which is crucial for the sequel) on
the set Is(I) of isomorphism classes 7 of objects I e Ob(I) by

T < J if I(J,J)^0.

This induces a partial ordering on the set Is(I) of isomorphism classes
of objects, since the ^J-property ensures that I < J and J < I implies
I = J . We write that I < J if I < J and I ^ J . If I e Ob(I) with
the automorphism group Aut(J), we let k[I} = kA\it(I) be the group ring
of Aut(J) and write k[I]-Mod for the category of left A; [J]-modules.

For a fixed I e Ob(I) we introduce the following covariant functors
needed in the sequel.

Cosplitting functor S i : H-Mod —^ fc[J]-Mod.

If M is a H-module, let Sj(M) be the A: [J]-submodule of M(I) equal
to the intersection of kernels of all A;-homomorphisms M(f): M(I) -> M(J)
induced by all non isomorphisms f : I — > J with I as source. Each
automorphism g e Aut(J) induces a map M(g): M(I) -^ M(I) which
maps Si{M) into itself. Thus 5j(M) becomes a left A-[J]-module. It is clear
how Si is defined on morphisms.

Coextension functor Ei: k[I]-Mod —^ H-Mod.

This functor sends N to Hom^j] (H(-, J), N).
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It is easy to observe that the category H-Mod has sufficiently many
injectives. Hereafter, we assume that I is an E'J-category with the filtration
0 = To C Ti C • • • C Tm = Is(I) such that

M I C Tk, J € Ti, I <J implies k > £.

Injective /el-modules for such a category I have been analysed in [6]. It turns
out that they can be constructed from injective modules over group rings.

The dual category fc-Mod015 is isomorphic to the category k-Mod0

of linearly compact ^-modules considered in [10]. For our further purpose
we briefly present some results on the category k-Mod0. A topological
fc-module M is said to be linearly topological if it is Hausdorff and there
is a fundamental system Af(M) of neighborhoods of zero consisting of
/c-submodules. A linearly topological A:-module M is called linearly compact
if for every collection of its closed affine subsets {F^}^j (i'e. Fi = m^ + Mi
for some closed A;-submodule Mi C M) with the finite intersection
property it holds Q Fi -^ 0. For linearly topological A;-modules M

id
and N let Hom^(M,A^) be the set of all continuous fc-linear maps.
We topologize this ^-module by requiring that for any linearly compact
A;-submodule K C M and an open A;-submodule V C N the A;-submodules
{/ € Hom^(M,7V); f(K) C V} form a subbasis of a linear topology on
Hon4(M, N). For a A;-module M, let M* = Hom^(M, k) be its topological
dual.

THEOREM 1.1 (see [10]).

(1) A linearly topological k-module M is linearly compact if and only if
M* is discrete.

(2) If M is linearly compact or discrete then the canonical map
M —^ M** is a topological isomorphism.

(3) If M and N are linearly compact or discrete k-modules then
the canonical map Hom^(M,7V) —> Hom^(A^*,M*) is a topological
isomorphism.

There is another interesting link between linearly compact /^-modules
and discrete ^-modules.

Remark 1.2 (see [10]). — For a ^-module M any two of the following
properties imply the third:

(1) M is discrete;
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(2) M is linearly compact;

(3) M is finitely generated.

For a linearly topological ^-module M and its closed A;-submodule M'
the quotient topology on M/M' is linear. In particular, if M' is an open
submodule then this topology on M/M' is discrete. Let UJM' '' M —^ M/M'
be the canonical map. For V\,V^ G A/"(M) such that Vi C V^ let
c^ : M/Vi —^ M/Vs be the canonical map and

MA = lim M/V.
VGA^(M)

Write TIV : M'^ —» M/V for the canonical projection. Then the collection of
fc-submodules {kerTTy; V C A/^M)} forms a subbasis of a linear topology
on M^. The ^-module MA with this topology is called the completion
of M. The collection of maps ujy : M —> M/V, for V G A/"(M) determines
a continuous monomorphism (jj:M —r MA and c<;(M) is dense in M^
A topological ^-module M is said to be complete if the map uj is a
topological isomorphism. Of course, if M is linearly compact or discrete
then C(;(M) is closed in MA and thus M is complete as well.

For two linearly topological ^-modules M and N let M 0 N be their
tensor product over k.lfVCM and W C N are two open A;-submodules,
we write

[V,W] = V (g) N + M (g) TV.

Then, the following lemma holds.

LEMMA 1.3. — IfM and N are linearly topological k-modules then
the collection of k-submodules [V, W\ ofM^N with open k-submodules
V C M and W C N forms a linear topology on M (g) N and such that
the canonical bilinear map M x N —^ M (g) N is universal with respect to
uniformly continuous k-bilinear maps to linearly topological k-modules.

Write M 0 N for the completion (M (g) A^ and call it the complete
tensor product of M and N . Then the canonical map M x N —> M ̂  N is
universal with respect to uniformly continuous /^-bilinear maps to complete
/^-modules. Now we are in position to show

PROPOSITION 1.4. — IfM and N are linearly compact (resp. discrete)
k-modules then M 0 N is linearly compact (resp. discrete) and there is a
topological isomorphism M* 0 TV* —^ (M §) N ) * .
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Proof. — Observe that

M 0 T V = lim M(8)TV/[V,TV] w Hm M/V (g) TV/TV.
yeA^(M) yJv^M)
weArw w^AfW

If M and N are linearly compact then the quotient ^-modules M/V and
N/W are linearly compact and discrete. Hence by Remark 1.2 both of them
are finitely generated. Thus M 0 TV is linearly compact as an inverse limit
of finitely generated /^-modules and (M 0 TV)* is discrete. Of course, if M
and N are discrete then the induced topology on M (g) N is discrete, so
M0TV = M 0 N and (M 0 TV)* is linearly compact.

Define a map

/ :M*§TV* —.(MgTV)*

as follows. For (f) e M* and ^ € TV* there is a A;-bilinear uniformly
continuous map (J)^\M x N —^ k such that (0'0)(m,n) = 0(m)'0(n) for
m € M and n € TV. Thus there is a unique map ( f ) ® ^ : M ^ N — ^ k since fc
is a complete A;-module. Therefore, we can write f{(f) 0 '0) = ^ 0 ̂  to get
a continuous A;-map /:M* 0 TV* —» (M § TV)*. It is not difficult to see
that / is a continuous monomorphism.

Let now 7 G (M(g)TV)* and M,./V be linearly compact. Then
there are V € M{M) and W C A/'(AQ such that 7([y,TV]) = 0. Let
7: M/V (g) 7V/W -^ k be the induced map. But M/V and 7V/W are finitely
generated ^-modules, hence

{M/V 0 N/wy w (M/VY 0 (N/W)\
Let a i , . . . , Or € (M/V)* and /?i , . . . . ̂  e (TV/TV)* be such that

7 = Q;i (g) /?i + • • • + Or 0 l3r.

Define 0, € TV* and '0, C M* by ̂  = a,7Ty and -0, = /^TT^ for i = 1,..., r.
Then 7 = /(<^i 0 ̂ i + • ' • + <pr ^ '0r) and / is an epimorphism.

Let now M and N be discrete and 7 € (M (g) TV)*. For finitely
generated /c-submodules V C M and TV C N let V C M* and W C TV*
be the corresponding open /c-submodules. Then the restriction ^\v^w
determines an element in M*/V (g) TV*/TV. Thus we get

( ^ e M * 0 T V * = hm M*/y(g)TV*/TV
yeA^(Ar)
WeAf{N*)

such that f((f)) =7. Q

Theorem 1.1 and Proposition 1.4 yield immediately
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COROLLARY 1.5.

(1) Any linearly compact k-module is topologically isomorphic to a
product of one-dimensional k-modules.

(2) If{Vi}^ and {Wj}.^j are collections of linearly compact k-modules
then there exists a topological isomorphism

n ^ ^ n ^ ^ n ^ 0 ^
^i ,eJ ^

Let now I be an £7-category. A covariant functor from I to k-Mod° is
said to be a linearly compact left H-module. Then [6] yields a full description
of all injective H-modules. For two linearly compact left H-modules M, N
we define their complete tensor product M 0 N as a linearly compact left
H-modules such that

(M 0 N){I) = M{I) 0 N ( I ) for all I e Ob(I).

Put Q = {Qi}z>o for a graded linearly compact left H-module.
Then for any I G Ob (I) we get a graded linearly compact left /^-module
Q(7) = {Qi(I)}i>o and let \q\ = i for q € Qi{I). For n > 0, by means
of associativity of the complete tensor product 0, we can define graded
linearly compact left H- modules ̂ Q and SnQ (called the nth tensor and
symmetric power\ respectively) as follows:

(T"Q),(J) = (D Qi,(I)^---®QiM)
ii-}----+in=i

and

(^^(^((^^(.oy
for i > 0, where ((^(^(J^ = (r^JV^O^J^ and (^0)^(1) is
the homogeneous A;-submodule of (r^)^) generated by elements

qi 0 • • • 0 qn - (-l)!9'6!'!9^1^! (g) • • • (g) q^ ̂  Qk ̂  " ' ^> Qn

for qk € Qiq^(I) and k = l , . . . ,n . Then the natural canonical map
7^:7^0(7) -^ ^0(7) I ^ Q ^ I ) determines Trj:?71^^) -^ ^0(1) for
J C Ob(I).
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Moreover, if characteristic of k is zero then there is a natural map

ai: SnQ(I) —— ̂ 0(1)
such that

(Tl{qi 0 • • • 0 qn + ̂ OT) = -, ^ ̂ )<7r(l) 0 • • • 0 9r(n)
Hi\

re-Sn

for gfc ^ Q\q^(I), I e Ob(I) and k = 1,. . . , n, where 6^ is the nth symmetric
group and £:Sn —> {+1,—!} the sign map. Then we get the induced natural
map

ar.^QW^f^l)
such that TTjSj = id^^/^ for I e Ob(E) and fi^Q is a direct summand
of r^Q. Moreover, we define TQ and 5Q, the graded linearly compact
tensor and symmetric left H-algebra, where for i > 0

(TQ\ = ̂ (T"Q), and (5Q). = ̂ (5"0),.
n>0 n^O

Observe that SQ = TQ/RQ^ where RQ is the closed homogeneous
ideal of TQ generated by elements

x S> y - (-1)^'^^ (^ x for x.y^TQ.

Remark 1.6. — If Q = {Qi}i>o is a graded injective linearly compact
left fcl-module and the complete tensor product preserves injective linearly
compact left H-modules then the graded linearly compact left H-modules
T^O, ^Q for n > 0 and TQ = {(rQ),},>o, SQ = {(SQ)i}i>o are injective
linearly compact left H-modules.

2. Algebras over a category and their injective
minimal models.

Let DGAk be the category of homologically connected commutative
differential graded ^-algebras (or simply /c-algebras). We briefly recall some
constructions presented in [9]. For a given map 7:B —^ E in DGAk^
where B is augmented, Halperin [9] considers its "minimal factorization".
Namely, he generalizes the notion of a minimal fc-algebra (cf. [12]) to a
minimal KS-extension given by a sequence of augmented /c-algebras

E:B -^C -^A,
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where A is free as a graded commutative A;-algebra generated by some
graded A;-module M = {Mi}i>o. If MQ = 0 then the extension E is called
positive. Next in [9], it is shown that for any map 7: B —>• E of connected
A:-algebras, where B is augmented there is a unique (up to isomorphism)
minimal J^5'-extension

E'.B-^C -^ A

and a homology isomorphism p : C —> E such that p o i = 7.

The extension E together with the map p : C —> E is called a KS-
minimal model for 7. In particular, for a A;-algebra A and the canonical
map k —> A one gets a minimal algebra MA together with a homology
isomorphism PA '- MA —> A called the minimal model for A.

An object A = {A^nX) in DGAjc is called complete if

(1) A71 is a complete linearly topological ^-module and the differential
d: A71 -^ A71-^1 is continuous for all n > 0;

(2) multiplication A71 x A771 —> A71'̂ 771 is uniformly continuous for
all n, m > 0 (with respect to the linear product topology on A71 x A771).

Write DGA, for the subcategory of DGAfc determined by complete
differential graded A:-algebras.

Let A be a complete fc-algebra with the differential d, M a (non-
graded) linearly topological ^-module and r:M —^ Z^^A a A:-map to
the (n + l)-cocycles of A for a fixed n > 0. Denote by (M, n) the graded
fc-module with M in degree n and 0 otherwise. Define a differential dr
on A 0 S(M, n) by

d r | A = d and d^ |M= T ?

where S{M^ n) is the completion of the symmetric algebra <?(M, n) on the
graded ^-module (M,n). Then the A;-algebra (A § 5'(M,n), dr), denoted
by A 0T S(M^ n), is called an elementary extension of M and the class

[r] e TT^Hom^M.A)) = Hom^M^-^A)

the structure class. For a minimal /^-algebra M let M(n) be its subalgebra
generated by elements of degree less or equal n. Then M is said to be
nilpotent if each M(n} is constructed from M(n — 1) by a finite number of
elementary extensions. A homologically connected k- algebra A is said to
be nilpotent if its minimal model MA is nilpotent. If X is a (connected)
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nilpotent simplicial set then the de Rham Q-algebra A\ of differential
form is nilpotent as it was shown in [1]. If a ^-algebra A is augmented let
A = ker(A —^ k) be its augmentation ideal. Recall that decomposability of
the differential d of A means that d(A) C A • A.

Let I be an E'7-category and kl-DGAk the category of all covariant
functors from I to DGAk called kl-algebras (or simply systems of k-
algebras). We say that a H-algebra A is complete (resp. linearly compact)
if the algebras A(I) are complete (resp. linearly compact) for all I € Ob(I)
and A is injective if the left H-modules A71 are injective for n > 0, where
A71^) = {AW for all I e Ob(I).

For any complete injective (as a H-module) H-algebra A and a
complete left H-module M we consider two types of cohomology of A.

(1) The H-module ffn(^) such that ^{A)^) = ^(.4(7)) for
I G Ob(I) and n > 0.

(2) The cohomology ^(A.M) = ̂ (Hon^M,^)) with coefficients
in M for n > 0, where {'H.om(M,An)}n>o is a cochain complex in the
category of complete left H-modules. For a projective resolution M^
of M in the category of complete H-modules we form the double
complex Hom(M^, A). The standard homological algebra arguments yield
a spectral sequence

E^ == Ext^M,^^)) =^ H^^M).

Notice that the injectivity of A (as a H-module) implies the convergence of
this sequence and ^{A^M) = Hon^M,!:/'71^)) if M is projective. This
spectral sequence is an essential tool in our further investigations.

Remark 2.1. — If A and B are injective (as H-modules) H-algebras
then a map f :A —^ B induces an isomorphism i^"^/): -H'71^) —> H71^)
for n > 0 if and only if for any H-module M the induced map
AT^/, M): IT^A, M) -^ ̂ (B, M) is an isomorphism for n > 0.

Proof. — If -H^/) is an isomorphism for n > 0 then from the
above spectral sequence it follows that -H^/, M) is an isomorphism as well
for n > 0.

Let now ^(^M) be an isomorphism for any H-module M and
n > 0. For a fixed object I € Ob(I) consider a H-module MI such that
Mi(J) = H(J,J). Then ^{Mi.A) = ^(.4(7)) = ff71^)^) and H71^
is an isomorphism for any n > 0. D
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We also consider relative cohomology

Hn(A^Al)=Hn(A^xA^l) and

^(A^A^M) = Hn(Rom(M,A^ x ^+1)

for a map f :Ai —> A^ of H-algebras with differentials di and d2, where
d: A^ x A?+1 ̂  A^ x A^2 is given by

d(a2, ai) = (d2(a2) + /(ai), - di(ai))

for ai e A^1, 02 € A^ and n > 0 .

Throughout, I is a cofinite El-category (each isomorphism class 7 has
only finitely many predecessors). For any I € Ob(I) we define its height as
the number of its predecessors.

Hereafter, we assume that all H-algebras A are homologically
connected, i.e. satisfy H°(A) = fc, where k is the constant H-module
determined by a field k of characteristic zero. To define an injective
minimal model of A we need to remind the following result presented in [8]
and generalizing [5].

THEOREM 2.2. — If Us an El-category such that k[I} is a semisimple
ring for all I € ob(l) and there is a filtration

0 = To C Ti C . • • C Tm = Is(l)

satisfying (-k) then for any complete kl-algebra A there is a complete
and injective (as a kl-module) kl-algebra Q(A) and a natural inclusion
i^'. A—f Q(A) which is a cohomology isomorphism.

If k is the constant H-algebra determined by a field k then k is not
in general injective as H-module. But for any H-algebra A (injective as a
H-module) there is a map Q(k) —^ A of I-algebras extending the canonical
inclusion k —^ A as it follows from a more general fact.

LEMMA 2.3. — Let 1 be an El-category satisfying (*). If f : A —^ B
is a map of kl-algebras and B is injective as a kl-module then there is an
extension map f : Q(A) —^ B of kl-algebras.

Proof. — We construct by induction over the filtration of Is(I) a
sequence of maps ff,: Q^(A) —^ B for i = 0,1, • • • , n.
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Let fo = f. Given fe'.Q^A) —^ B such that the diagram

Q,-i(A) —^ Q,(A)

commutes we construct a map f^i:Qw{A) —^ B as follows. The H-
algebra 6 is injective, so by [6] there is an isomorphism of H-modules

B ^ n EiSiB
7els(i)

and Ji induces maps EiSife:EiSiQ^A) -^ EjSiB for J e Ob(E), where
EI and Sj are the coextension and cosplitting functors considered in
Section 1. Then f^ together with these maps determines a map

^+i:Q,+i(A)—B.
The map / = fm satisfies the required property. Q

A H-algebra A with a map Q(k) —^ A is called a kl-algebra under
Q.(k) or a based kl-algebra. A homotopy between maps of based H-algebras
is called a based homotopy. A H-algebra A is called nilpotent if A(I) is
nilpotent for all I € Ob(I).

A based injective, nilpotent and complete H-algebra M is said to be
i-minimal if it satisfies the following:

(1) there is an inclusion Q(k) c-^ M.\

(2) M(I) is a positive J^-extension ofQ(fc)(J) for all I e Ob(E);

(3) M(I) is a minimal J^fi'-extension of Q(k)(I) for all terminal
JeOb(I);

(4) if d is the differential of M then d\s,M is decomposable for all
I G Ob(I), where 6j is the cosplitting functor considered in Section 1.

We shall show that %-minimal H-algebras play the same role in the
category of nilpotent complete H-algebras as minimal algebras in the
category of nilpotent A;-algebras.

PROPOSITION 2.4. — Let 1 be an El-category satisfying (^). If a
map f : M —^ At of i-minimal kl-algebras induces an isomorphism on
cohomology then f is an isomorphism.
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For the proof, we proceed by induction over the filtration of Is(I) and
mimic the proof of Theorem 5.2 in [13]. For the surjectivity of /, we make
use of the structure of injective H-modules considered in [6]. D

The following properties of z-minimal H-algebras are completely
analogous to the nonequivariant ones (see e.g., [1] and cf. [13]).

PROPOSITION 2.5. — Let 1 be an El-category satisfying (*) and
f : A —> B a cohomology isomorphism of nilpotent based kl-algebras
and g : M. —> B a map of kl-algebras, where M. is i-minimal. Then there is
a map f : M. —> A, unique up to based homotopy, such that the diagram

A

>"'\1
M ——9-——B

commutes up to based homotopy.

Then, we can state

COROLLARY 2.6. — Let 1 be an El-category satisfying (^).

(1) If f : A —> B is a cohomology isomorphism of nilpotent based
kl-algebras and M. is an i-minimal kl-algebra then the induced map
f^ : [M.^ A] —>• [M., B] of the sets of based homotopy classes is a bijection.

(2) If A is a nilpotent kl-algebra, p : M —^ A, p ' : M' —^ A are two
cohomology isomorphisms and A4, M' are i-minimal kl-algebras then there
is a (unique up to based homotopy) isomorphism f : M. —^ M' such that
the diagram

commutes up to based homotopy.

Let now A be a nilpotent fel-algebra and p: M.^ —^ A a cohomology
isomorphism, where M^ is z-minimal. Then M^ is called the i-minimal
model of A. The above uniqueness results make this definition meaningful.



INJECTIVE MODELS OF (^-DISCONNECTED SIMPLICIAL SETS 1505

To show the existence of an ^-minimal model for a H-algebra we first
make the following important construction. Let A be a complete H-algebra,
M a complete H-module and r: M —> Z^^A a H-map, where Z^^A is
the kl- module of cocycles of degree n-\-1 of the H-algebra A for some n > 0.
We construct a linearly topological H-algebra A(M) called the elementary
extension of A.

Let

0 -^ M -^ Mo -^ Mi ̂

be the minimal injective resolution of M in the category of linearly
topological kl- modules, i.e. M(, is the injective envelope of Imo^-i
for i = 0,1,.... Then, the map r:M —^ Zn+lA induces H-maps
TH : Mi —> ^n+^+l such that the diagram

UJ UJQ UJ\

0 —, M ———> Mo ——> Mi ——> ' ' '

[T ir r° r1

Z^A —— ^n+l -̂ -> An+2 -^ • • •

commutes. Let M^ = {M^}^>o be the graded H-module, where M(, has
degree n + £. Define the complete H-algebra

A{M)=ASSM^

where the differential on A(M) restricts on A to the given on A and on
Me, to ujfi + (-l)^r^ for t = 0,1,.... Observe that by Proposition 1.4 and
Remark 1.6 the H-algebra A(M) is injective and linearly compact if A
and M are so.

LEMMA 2.7. — Let 1 be an El-category satisfying (^r) and A and B
complete kl-algebras and T : M —> Z^^A a kl-map. IfB is injective {as
a kl-module) and complete and (/) : M —>• B71 a map of kl-modules then
for a map f : A —^ B of kl-algebras such that d<^(m) = fr(m) for m CM,
where d is the differential on B then there exists a map f : A(M) —> B
extending f and (f).

Proof. — Let

O n /r ct/ TI /r ^0 n r ^1
—> M ———> MQ ———> MI ———> ' ' '

be the minimal injective resolution of M in the category of linearly
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topological H-modules. By the injectivity ofB71 there is a map <^o : MQ -^ B71

of H-algebras and such that <^o^ = <f>' By assumption

d<^o -/T-O|M =0,

hence it defines a map M/MQ —> B71^1 which, by the injectivity of ^n+l,
extends to a map ^i: Mi —> Bn+l such that ^UJQ = d<po - fro.

Assume inductively that there is a map ̂  : Mn —> B71^ such that

d^-(-l)^r,|i^_,=0.

Hence it determines a map M^/Imc^_i —^ g^+^+i and by the injectivity
of B^^1 if extends to a map <^+i: M^+i —^ g^+^+i such that
<^+ic^ = d0^ - (-lYfre. Then

d^+l-(-l/+l/T,+l|^„=0.

The H-algebra B is complete, therefore the maps f ' .A —^ B and
^:Me -^ B^ for £ = 0,1,.. . determine a map /: A(M) -^ B of H-
algebras extending / and </). D

THEOREM 2.8. — Let 1 be an El-category satisfying (*). If A is a
nilpotenty injective (as a kl-module) and complete kl-algebra with linearly
compact cohomology and the category of injective linearly compact kl-
modules is closed with respect to the complete tensor product 0 then
there exist an i-minimal kl-algebra M^ and a cohomology isomorphism
p : M^ -^ A.

Proof. — We proceed inductively on degree and construct A4^ as the
increasing union of z-minimal H-algebras M^\n^) for n > 0 and i > —1,
where

M^{n) = M^(n, -1) = |j M^{n - U)
e>o

with a map p{n)\M^\n} —> A which is a cohomology isomorphism in
degree <: n and a cohomology monomorphism in degree n + 1.

Begin with M^^O) = Q(k) and the based map /?(0) :A^(^)(0) -^ A
Assume we have an ^-minimal fcl-algebra M^\n — 1) and a map

p(n-V)'.M^(n-l) —^A
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which is a cohomology isomorphism in degree < n — 1 and a monomorphism
in degree n. We consider

M^cokerJT^n-l))

and show (as in [13] by comparing some spectral sequences) an existence of
maps r^n - 1): M^ -^ Z^M^^n - 1) and p ' ( n - 1): M^ -> A71. Then,
by Lemma 2.7 there exists a map

p(n^T): M^ (n - 1)(7<) — A

extending p{n — 1) and p ' ( n — 1) and inducing a cohomology isomorphism
in degree < n.

Now let

M^ = kerff^^rT^L)).

We study again a relation between some spectral sequences to find maps

r"{n - 1): M^ -^ Z^M(n - 1)(M^) and

p / /(n-l):M, /-An.

By Lemma 2.7 there is a map

p(n - 1,0) :M^{n - 1,0) = M^(n - 1)(M^)(M^) — A

extending p(n — 1) and p"(n — 1). Of course, the extension

M^{n-l)WM

may cause p{n — 1 , 0 ) to be not monomorphic in degree n + 1. If now one
repeats the construction countably many times and takes the increasing
union of these extensions then the resulting kl- algebra M^\n) will be
z-minimal and by nilpotency of A the map p(n): M^\n) —> A induced by
the maps p(n — l ,-^): M^^n — 1,^) —> A at each stage will be a cohomo-
logy isomorphism in degree < n and a monomorphism in degree n + 1,
as desired. D

Remark 2.9. — Let A be any complete H-algebra with linearly
compact cohomology and Q(A) the associated componentwise injective kl-
algebra determined by Theorem 2.2. Then, by the above theorem there is an
z-minimal kl- algebra M.^ and a cohomology isomorphism p : A4^ —> Q(A)
and M.^ is called the i-minimal model of A.
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3. Applications to rational homotopy theory.

For the field of rationals Q let DGAq be the category of commutative
graded differential Q-algebras. Given a simplicial set X one can form a
Q-algebra A^ by taking collections of Q-polynomial forms on each simplex
(sums of terms of type o^o? • • • 5 tn} d^i A ... A dt^, where uj(to,..., tn) is
a Q-polynomial) that agree when restricted to common faces (see [1] for
more details). We prove below that A^ admits a natural linearly complete
topology.

Let F : SS015 —> k-Mod be a contravariant functor from the category SS
of simplicial sets to that of fc-modules, where A: is a field. For a simplicial
set X we define a natural topology on F(X) as follows: for any map
x: A(^) -^ X fc-submodules ker(F(x): F(X) -^ ^(A(^)), where A(^) is the
^-simplex form a fundamental system of neighborhoods of zero in F(X).
From the definition easily follows

LEMMA 3.1.

(1) For any simplicial map x : A(^) —>• X the induced map F(x) :
F(X) —^ ^(A(^)) is continuous.

(2) If M is linearly topological k-module then a map f : M —> F{X) of
k-modules is continuous if and only if for any simplicial map x : A(-^) —^ X
the composition F(x)f : M —>• F(A(^)) is continuous.

From this one can deduce

COROLLARY 3.2.

(1) If f : X —> V is a simplicial map then the induced map
F(f) : F(Y) -^ F{X) is continuous.

(2) If F, G : SS015 -> k-Mod are contravariant functors and ^ : F —^ G
is a natural transformation then for any simplicial set X the map
^(X) : F(X) —>• G(X) is continuous (with respect to the natural topology).

In particular, for k = Q we get a natural topology on the Q-module
A^ of n-forms on a simplicial set X for n > 0.

PROPOSITION 3.3. — Let X be a simplicial set. Then:

(1) the natural topology on A^ is complete for all n > 0;
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(2) the multiplication A^ x A^ -^ A^ of differential forms is
uniformly continuous {with respect to the product topology on A7^ x A^);

(3) the differential d^ : A^ —> A1^1 is continuous.

Proof.

(1) First observe that for a simplicial map x: A(-^) -» X there is an
isomorphism A^/kerAj w A^ of discrete Q-modules. Then, the map

0:A^ —^ Inn A^/kerA^ ^ hm A^
x-.^W-^X x:^)^X

such that (f)(uj) = (Ag(ej))^:^)_^, for uj e A^ is a required topological
isomorphism.

(2) For a simplicial map x: A(^) —> X and the corresponding open
fc-submodule V = ke^A^^): A^ -^ A^), consider the subspaces

^ke^A^A^-.A^),

^=ker(Am(^):A^^A^)

of A^ and A^, respectively. Then, the image of £/i x A^ and A^ x U^
by the multiplication map of differential forms is contained in V, so it is
uniformly continuous.

(3) The differential d^ is natural with respect to X, hence it is
continuous by Lemma 3.1. D

Let now Cn(X, Q) be the discrete Q-module ofn-chains on a simplicial
set X with the coefficients in the field of rationals Q for n > 0. Then on the
Q-module C^X.Q) of n-cochains, for n > 0 there is a linearly compact
topology considered in Section 1 which is the same as the natural one.
In particular, it follows that the induced topology on the cohomology
groups ^(X.Q) is linearly compact for n > 0 and the dual Q-module
(^(X, Q))* is isomorphic to the nth homology group Hn(X, Q) for n > 0.
On the other hand the map

„* . A* ___s. /^* (V fTf\\^ x ' ^ x — > u {^^W
given by the integration of forms is a natural transformation, so it is
continuous by Corollary 3.2. Therefore, by the de Rham theorem (see [1])
the induced map on cohomology

^^:HnW^Hn(X^)

is a continuous isomorphism for all n > 0.
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Let now X be a G-simplicial set with G a finite group. Much of
the algebraic-topological information about X is encoded in the form of
functors from the category 0(G,X) which may be strictly described as
follows:

• The set ObO(G, X) of objects consists of pairs ( G / H , a), with H a
subgroup of G and a a connected component of the fixed point subset X11

(z.e.ae7ro(X^)).

. Morphisms (G/^,/3) -^ ( G / H , a) are G-maps (f):G/K -> G/H
such that 7To((j))(a) = f3, with (j): X11 —^ X1^ the induced map of the fixed
point simplicial subsets.

In the sequel we will identify an object ( G / H , a) of 0(G,X) with a
and denote by X^ the connected component of X11 corresponding
to a 6 /KQ(XH). Observe that the category 0(G,X) results also as
Grothendieck construction, namely 0(G)j7To(X), where 0(G) is the
category of canonical orbits of the group G and 7To(X): O^G)0^ —> Set
is a contravariant functor such that TTQ(X)(G/H) = ̂ (X11) for G/H G
ObO(G).

Let H = Ho, Hi , . . . ,Hm be all distinct subgroups of G conjugate
to H. For a € 7ro(X11) let ajc € 7^Q{XHk) be one of the corresponding com-
ponent of X^. Then the set of morphisms 0(G,X){(G/K,f3), { G / H , a))
is in one to one correspondence with the disjoint union

J 0(C?,X)((G/^,afc),(G/^a))
KCHk
c^C/3

of morphisms, hence we may identify both of them in our further
investigations. Moreover <9(G,X) is a cofinite -EJ-category and for the
isomorphism class a of its object a there is the largest number d(a) = n
such that there is a sequence a = a\ < ' ' ' < a^. The group G is finite,
therefore for the set of isomorphism classes IsO(G,X) we can define a
filtration

0 = To c Ti c • • • C Tm = T = Is 0(G, X)

satisfying (*), where 7) = {a; d(a) < £} for t = 0,1, . . . , m.

For a G-simplicial set X let A^ be a QO(G, X)-algebra defined by

A^(G/H,a)=A^
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and the maps on forms are those induced by the action of G on the
connected components of the fixed point simplicial subsets. In [6] we proved
that Ay is an injective and complete as a QC^G, X)-module.

Denote by C*(X, Q) the right Q(9(G, X)-module defined by

^(X,Q)(G/^a)=G*(Xf,Q)

for ( G / H , a ) e Ob(0(G,X)), where the latter stands for the ordinary
chain complex of X^ with coefficients in Q. Then we get the induced right
QO(G, X)-module Hn{X, Q) such that

H^X^)(G/H^a)=Hn(X^Q)

for { G / H , a) C Ob(0(G, X)) and n > 0.

PROPOSITION 3.4. — The right QO{G,X)-module C*(X,Q) is
projective.

Proof. — Let
w^

1-
M ——6-——> N——>0

be a diagram of right QO(G, X)-modules with an exact row and 0 to
be constructed. Let X' C X be a subset containing exactly one element
from each orbit of G in X. Given x ' G X ' , consider x ' as an element of
G,ic (Xaa;/, Q) for some component a € ^(X^), where G^i is the isotropy
subgroup of x ' . Define 0(G/G^,a)(xf) e M(G/Ga;/,a) to be any element
with

^(G/G,/,a)0(G/G,/,a)(^) =7(G/G,/,a)(.r').

Extend 0 to the whole orbit by 0{gx') = g^O^x') for g e G, where
^ =M{g:{G/G^^ga) -. (G/G^a)).

If now x e G^(X^,Q) represents one of generators then x is
an element of X^' C X^ and H C Gx. Hence we get a map
(f): { G / H , /?) ̂  (G/G^, a). Thus x = G*(X, Q)(0)(^) and we define

0(G/H^)(x) = MW0(G/G^a)(x). D
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For any right QO(G, X)-module M, we write

(%(X, M) = Hom(C*(X, Q), M)

and we consider two types of cohomology of X (resp. A^).

(1) The Q(9(G,X)-module ̂ (X.Q) (resp. fT^)) such that

^(X^G/H^a) = ^(Xf^Q)

(resp. (^(^(G/^a) = ̂ (A^))

for (G/^ a) € ObO(G, X) and n > 0.

(2) The cohomology H^(X,M) = ^^n(%(X,M)) with coefficients
in a right QO(G, X)-module M (resp. ^(A^.N) with coefficients in a
linearly complete left QO(G, X)-module N) for n > 0.

Standard homological algebra arguments yield a spectral sequence
(see [2])

E^ = Ext^(Jf,(X,Q),M) =^ H^^X^M)

(resp. E^ = Ext^^ff^^)) =^ ̂ (^AQ).

Notice that the projectivity of G*(X,Q) (resp. injectivity of A^ as an
QO(G, X)-module) implies the convergence of the spectral sequence.

For a right Q(9(G, X)-module M, let M* denote its dual left
QO(G, X)-module defined by

M*(G/ff,a) = Hom(M(G/^a),Q)

for (G/H,a) € ObO(G,X) with the linearly compact topology on each
M"{G/H,a). Taking these facts into account we got in [7] the following
equivariant de Rham Theorem (c/. [13]).

THEOREM 3.5. — IfX is a G-simplicial set and M a right QO(G, X)-
module then there is an isomorphism

HS(X,M)^Hn{A^,M^ foralln^O.

A G-simplicial set X is called nilpotent if simplicial subsets X^
are nilpotent for all subgroups H C G and a C ^(X^). Therefore, the
associated Q-algebra A^ is nilpotent for a nilpotent G-simplicial set X.
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Let /: X -> V be map of G-simplicial sets and 0(G, /): 0(G, X) -^
0(G, Y) the induced functor. Then there is a map of QO(G) J-algebras

(^o(A/*):^o0(G,/)^^

such that

/* (G/^, a) = A- : A^ ^ A^H .Ja ^(^x-) a

Therefore, we get a functor

^* : G-SS —. 0(G)f-DGA^

where O(G)J-^GAQ is the category of functors from 0(G,X) to the
category DGA^ for X running over all G-simplicial sets.

To show an existence of an z-minimal model of A^ we need the
following

LEMMA 3.6. — The category of injective linearly compact left
kO{G, X)-modules is closed with respect to the complete tensor product <§)
for any field k.

Proof. — First observe that any injective linearly compact left
kO{G, X)-module is a direct summand of a product ofco-Yoneda kO(G, X)-
modules of the form

(A;0(G,X)(-,(G/^a)))*

for some ( G / H , a) e Ob 0(G, X). Therefore, by Corollary 1.5 for the proof
it is sufficient to show that the complete tensor product

(fc0(G,X)(-,(G/^i,ai)))* 0 (A;0(G,X)(-,(G/^,a2)))*

= (A;0(G, X)(-, (G/^i, ai)) 0 kO(G, X)(-, (G/H^ 02)))*

of two co-Yoneda kO{G, X)-modules is a product of some co-Yoneda
fc0(G, X)-modules. But for an object ( G / K , f3) in the category 0(G, X)
the free A;-module

^0(G, X) ((G/^T, /?), (G/^i, ai)) ^ kO(G^ X) {{G/K, /?), (G/H^ 02))
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is freely generated by the set

0(G,X)((G/^,/3),(G/^i,ai)) x 0(G,JO((G/^,/3), (G/H^a^)).

On the other hand the G-set GjH\ x G/H^ is in one to one correspondence
m

with the disjoint union |j G/JQ, where Ki is the isotropy group of some
i=l

point

Xi = (g[H^ gW € G/H^ x G/H^ for i = 1,. . . , m.

Then g ' ^ K i g ' , C H^ g'^K^ C H^ and the set 0(G,X)({G/K^),
(G/jFfi,ai)) x 0{G,X)({G/K,(3), (G/H^ 02)) is in one to one correspon-
dence with the disjoint union

m

\JO(G^X)((G/K^)^G/K^g^))xO^X)((G/K^)^G/K^g^a^^
i==l

Thus, by Proposition 1.4 there is a topological isomorphism of left
/^(G,X)-modules

(A;0(G,X)(-,(G/^i,ai)))* 0 (fc0(G,X)(-,(G/^a2)))*
m m

^n(A;(9(G,X)(-,(G/^,^ai)))*nn(fc0(G,X)(-,(G/^,^a2)^
z=l i=l

and this ends the proof. D

For a nilpotent G-simplicial set X the QO(G, X)-algebra Ay is
complete by Proposition 3.3 and injective by [6]. Hence, Theorem 2.8 yields

THEOREM 3.7. — If X is a nilpotent G-simplicial set then there is an
i-minimal QO(G,X) -algebra M^ {called the i-minimal model of X) and
a homology isomorphism px '. M^ —> A^.

We present now examples of z-minimal models of some G-simplicial
sets. Let Mn be a left QO(G)-module and n > 2. Then by [2], [3] there is
an Eilenberg-Mac Lane G-simplicial set K(Mn,n) of type (Mn,n). Let

0-M;:-^M,,o^M,,i^...

be the minimal injective resolution in the category QC^G^Mod"^ of the
dual linearly compact QO(G)-module M^ and let Mn,* = {Mn,e}e>o be the
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graded QO(G)-module, where M^ has degree n + L Then, the symmetric
left QO(G)-algebra S(Mn^) is the ^-minimal injective model of K(Mn,n)
with the differential restricting on Mg to ci^.

Let X and Y be G-nilpotent simplicial sets with 0{G, X) = 0(G, V),
and px ''MX —^ Ax, PY '-My —^ Ay cohomology isomorphisms, where
Mx and My are %-minimal models of X and V, respectively. Then
by the Kiinneth formula, the canonical map f:Ax § Ay -^ ^xxY and

the induced map px 0 py : M^ S M^ -^ Ax 0 A^ are cohomology
isomorphisms. From Proposition 2.5, we deduce that M^ § M^
is the %-minimal model of X x Y with the cohomology isomorphism
PXXY = f(px 0 py): M^ § M^ -^ AX^Y'

Thus, we may generalize the above example as follows. Let
M^,.. . , M^ be^ QO(G)-modules and n i , . . . , nj, > 2. Then, the left
QO(G)-algebra S(M^^) 0 • • • § 5(M^^) is the %-minimal model of
the G-simplicial set K(Mn^n^ x ... x K(Mn^nk) with the respective
differential.

To relate the homotopy groups of a nilpotent G-simplicial set X and
its z-minimal model MX we need another index category 0'(G, X) defined
as follows:

(1) the set Ob(0'(G, X)) of objects consists of pairs ( G / H , x) with H
a subgroup of G and x € X11\

(2) morphisms (G/ff, x) -> ( G / K , y) are given by G-maps (f): G / H ->
G/K such that (f)(y) = x with 0: X1^ -^ X11.

Equivalently, the category O^G.X) is given by the Grothendieck
construction 0(G) f ^o(X), where ^o(^): 0(G) -^ Set is a contravariant
functor such that ^o(X)(G/H) = X^ for G/H e ObO(G), where X^ is
the set of 0-simplexes of the fixed point simplicial subset X11.

The category 0(G,X) is a quotient of 0'(G,X) and let
r ] x ' - 0 ' ( G , X ) —^ 0(G,X) be the quotient map induced by the natural
transformation of functors ^o(X) -^ 7To(X). If X and Y are G-simplicial
sets and 0:7To(X) —^ 7To(Y) a map of (9(G)-sets then using methods pre-
sented in the proof of Proposition 3.4 we can prove that there exists a
lifting (^AbpO ^ ^o(Y) of ^ But ^'.^{X) -^ W) determines a
G-map ̂  : XQ —^ YQ of 0-simplexes defined as follows: let x G XQ and let Gx
be isotropy group of x then we write ^(x) = (^(G/G^)^). Therefore, we
may state
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Remark 3.8. — If X and Y are G-simplicial sets and 0:7To(X) —^
7To(y) is a map of 0(G)-sets then there exist a lifting 0': ̂ b(^) —^ ^o(X)
of 0 such that the diagram

W) ^-^ W)

^ . ^
7ro(X) ——— 7ro(r)

commutes and a G-map ^:XQ —> YQ of 0-simplexes such that ^H =
( f ) ' ( G / H ) for any subgroup H CG.

Let X be a G-simplicial set and 7Tn(X): 0'(G,X) ̂  Gp the functor
to the category Gp of groups such that 7Tn(X){G/H, x) = n^X11, x) is the
nth homotopy group of the based simplicial set (X11\x) for ( G / H ^ x ) in
Ob(0'(G, X)) and n > 1. Then there is a natural transformation

7Ti(X)X7r,(X)——7T,(X)

defined by the action

7^,(XH^x)x7^n(XH^x)—.7^n{XH^)

for n > 1, a subgroup H C G and a: e X^. Because of the functoriality of
the lower central series of a group we can define inductively functors

r,7r,(X):0'(G,X)—Gp

to the category of groups Gp for all t > 0 such that To^n^X) = 7r^(X) and
for a given r^TTn(X) let

r^i7Tn(X)(G/^) = {x - ax', x e r^(X)(G/^,.r), a e 7Ti(X^^)}.

Then we obtain a decreasing filtration

TTnW = roTTn(X) D FiTT,^) D r27T,(X) D . . .

of 7Tn(X) for all n > 1 and a short exact sequence

o ̂  r^(x)/r^i7rn(x) — 7rn(x)/r^i7rn(x)
——7r,(X)/r,7r,(X)^0

for n ^ 1 and ^ >, 0 with the trivial action of 7Ti(X) on
r^7rn(X)/r^+i7Tyi(X). Of course, if X is a nilpotent G-simplicial set
then r^7Tn(X) = 0 for some £ >_ 0. The Postnikov tower of a nilpotent
G-simplicial set X has the following properties (c/. [15] for a connected
case).
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PROPOSITION 3.9. — IfX is a nilpotent G-simplicial set and

n+l

its Postnikov tower then:

(1) 7Tn(Xrn) = 0 for H > m;

(2) 7Tn(fm) is an isomorphism for n <_ m;

(3) the fibration pn : Xn-\-i —> Xn admits a refinement

^n,J\—l

where Xn^\ —^ Xn^ is a principal G-fibration with the fibre given by the
G-Eilenberg-MacLane simplicial set K(r^n(X)/T^7rn(X),n + 1).

We say that a G-simplicial set X is rational if the homotopy groups
Tr^X11^) are 0-local for any subgroup H C G, x e X11 and n ^ 1. Of
course, for n > 2 this means that ^n^X11\x) are Q-modules, where Q is
the field of rationals. From [13] it follows that for any G-simplicial set X
there is a rational G-simplicial set XQ and a G-map /: X —> XQ with some
universal property. But for nilpotent G-simplicial sets holds (c/. [15] for a
connected case)

THEOREM 3.10. — Let f : X —^ XQ be a map of G-simplicial sets
with XQ rational. Then the following conditions are equivalent:

(1) HQ(f, M) : H^{XQ, M) -^ jyg(X, M) is an isomorphism for all left
QO(G, X)-modules M and n > 0;

(2) H^(f,M) : H^(X,M) -^ H^{Xo,M) is an isomorphism for all
right QO(G, X)-modules M and n > 0;

(3) 7r,(/):7r,(X).
n > 0;

—> TTyi(Xo) 0 Q = TTn(Xo) is an isomorphism for

(4) Hn{f, Q) : Hn(X, Q) -^ Hn{Xo, Q) is a isomorphism for n > 0;

(5) for any G-map g : X —^ V, where Y is rational there is a (unique up
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to G-homotopy) map g : XQ —>Y such that the diagram

x—g-— y'L.-r
Xo

commutes (up to G-homotopy).

To formulate the next result we need some notations. By Theorem 3.7
there exist the ^-minimal model px : M^ -^ A^ of the QO(G, JQ-algebra
and a map M^ -^ Q of Q0(G, X)-algebras for a nilpotent G-simplicial set
X, where Q is the constant QO(G, X)-algebra determined by the field Q.
Hence we may define a left QO(G, X)-module ̂ (M^) such that

^(M^G/H^a) = ̂ (^(G/^a))

and F^GM^) C ^M^ to be the image of the obvious map
^M^^C - 1) -^ ̂ M^ for all n ̂  1 and ^ > 0. This gives a natural
increasing filtration

o = ̂ ^M^ c ̂ ^M^ c r^M^ c • . .
of^M^ for all n> 1.

Now we may state the main result.

THEOREM 3.11. — If X is a nilpotent G-simplicial set and M^ its
i-minimal model then there are natural isomorphisms :

(1) H^(X,M) w ^(^M*) ^ ^(.M^M*) for all n > 0, where
M is a right (QO(G,X)-module and M* its dual linearly compact left
QO(G,X)-module;

(2) ff-^Q) ^ ff-^) = ff^A^) for all n> 0;

(3) the correspondence X ^ M^ is a bijection from rational G-
homotopy types to isomorphisms classes of i-minimal QO(G, X)-algebras',

(4) (7r,(X)/r,7r,(X))* ^ r^TT^M^^) for n > ^ i > 1 and
(r,7r,(X)/r,+i7r,(X))* ^ r^^^A^^^)/^^^^^) for n^ > 1,
where 77^ : O^G, X) -^ 0(G, X) is the quotient functor',

(5) ^^(n,^) is the i-minimal model for the (n,£)-stage Xn^ of the
Postnikov tower of X '
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(6) the map r : Mn+i^ -^ Zn+2{M^)(n,£ - 1)) determining the
elementary extension M^\n,e) = M^(n,i- l)(M^+i^) yields the k-
invariant

k^2 e H^^X^-I^TT^X) 0Q/r,+i7r,+i(X) 0Q)
^ [X^_i,^(r^7r^i(X)0Q/r^i7r^i(X)0Q,n+2)]^.

Proof. — The assertions of (1) and (2) follow from the equivariant
de Rham Theorem 3.5. In virtue of (4), (5) and Theorem 3.10 there are
isomorphisms

^^(X^-.i.r^+ipO 0Q/r^+i7rn+i(X) ^Q)

^H^^M^^Mn^)

^ Hom(M,+l^ffn+2(^^ ̂ )).

Thus (6) is straightforward.

We mimic [13] to sketch a proof of the remaining parts for G-simplicial
sets X such that 7Ti(X) = 0, for the sake of ease of notation and clarity
of exposition. The modifications required for the nilpotent case should at
this point be clear. We use the notations Xn and M.xW to denote the nth
stage of the Postnikov tower of X and of the ^-minimal model M.^ of X,
respectively for all n > 0. These assertions are obvious for Mx(0} = n(Q).
Assume by induction that they are true for M.x{^ — 1) and Xn-i. By
Theorem 2.8 there are isomorphisms

Mx^Mx{n-l)(7Tn(Xr)^ Mx(n)^Mx{n-l){7Tn(Xr)

and maps px^ :Mx^ -^ A^, px{n) :Mx{n) -. A^. If fn :X -^ Xn is
the G-map from X to its nth stage Xn in the Postnikov tower then we get
a map Qn ''M.Xn "^ M-x(n) and a commutative (up to based homotopy)
diagram

Mxr,—————^ M-x{n)

P^n Px (n)
^ A ^

-4;. -4—— ^.

The resulting map gn is a (based) isomorphism on cohomology up to
degree n, hence in all degrees because of the structure ofQ(9(G, X)-algebras
in question. Therefore, gn is an isomorphism by Proposition 2.4, since both
QO(G, X)-algebras Mxrz and Mx(n) are z-minimal. D
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The last result contains the following proposition. We refer to
Remark 3.8, for the zero step in the inductive proof of its second part.

PROPOSITION 3.12.

(1) Let f : X —^ Y be a G-map of simplicial sets and px '- - M X ^ 3 o
PY '' M-y —->• Ay i-minimal models ofX and V, respectively. Then there
is a (unique up to based homotopy) map f : M^ o 0(G, /) —> M^ such
that the diagram

(7ro (/),r)
^oO(GJ) ——————— Ax

T TPYOO(GJ) px

A^oO(GJ) ̂ ^L^

commutes (up to based homotopy).

(2) Ifcf): 7ro(X) -^ 7ro(y) is a map ofO(G)-sets, 0(G) f (f) : 0(G, X) -^
0(G,Y) the induced functor and f : M^ o (0(G)j0) -^ M^ a map
of QO(G,X) -algebras then there is a (unique up to G-homotopy) G-map
f : X —>• Y such that 7To(/) = (f> and the diagram

A-yo(0(G)f^ ——^—— A^

T Tpyo(0(G)/<^) \px

M^o(0(G)f<f>) (0J) ) M^

commutes (up to based homotopy).

In particular, for nilpotent G-simplicial sets X and Y (with Y
rational), there is a bijection

[X,Y}G^[M^,M^^

where [X,y]G! is the set of G-homotopy classes of G-maps from X to Y
and [M^ \MX\o(G)f ̂ e se^ ̂  homotopy classes of maps in the category
0(G)f-DGA^.

At the end, we mention some applications of the constructed ^-minimal
models. First, observe that with the ^-minimal model M'^ of a G-nilpotent
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simplicial set X we can associate an 0(G, X)-simplicial set FM^ such
that

(FM^)(G/H,a) = FM^{G/H,a},

where F : DGAq —)• §§ is the adjoint functor to the de Rham functor
A* : §§ —^ DGAq. By [I], p. 64, the adjunction maps

Xf -^FM^\G/H^a)

are rationalizations of Xf, for {G/H,a} e ObO(G,X). If now TM^
is the G-simplicial set associated with the 0(G, X) -simplicial set FM.^
(see [3]) then the canonical G-map X —> J^M^ is the rationalization of X.

Moreover, let Zyi be the cyclic group of order n and X a Hopf Zp/c-
simplicial set. Then, mimic the methods in presented [14], one may deduce
that the Q-localization XQ of the simplicial set X is Zp/c-equivalent to a
product of Eilenberg-Mac Lane Zp/c-simplicial sets, without any restrictions
on the G-connectivity as well as G-finite type of X.
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