We consider the space of binary forms of degree denoted by . We will show that every polynomial automorphism of which commutes with the linear -action and which maps the variety of forms with pairwise distinct zeroes into itself, is a multiple of the identity on .
Soit l’espace des formes binaires de degré . Nous montrons que chaque automorphisme polynomial de qui commute avec l’action linéaire de et qui conserve la variété des formes avec racines deux à deux distinctes, est un multiple scalaire de l’identité sur .
@article{AIF_1997__47_2_585_0,
author = {Kurth, Alexandre},
title = {${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms},
journal = {Annales de l'Institut Fourier},
pages = {585--597},
year = {1997},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {47},
number = {2},
doi = {10.5802/aif.1574},
zbl = {0974.14033},
mrnumber = {98e:14049},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1574/}
}
TY - JOUR
AU - Kurth, Alexandre
TI - ${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms
JO - Annales de l'Institut Fourier
PY - 1997
SP - 585
EP - 597
VL - 47
IS - 2
PB - Association des Annales de l’institut Fourier
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1574/
DO - 10.5802/aif.1574
LA - en
ID - AIF_1997__47_2_585_0
ER -
%0 Journal Article
%A Kurth, Alexandre
%T ${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms
%J Annales de l'Institut Fourier
%D 1997
%P 585-597
%V 47
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1574/
%R 10.5802/aif.1574
%G en
%F AIF_1997__47_2_585_0
Kurth, Alexandre. ${\rm SL}_2$-equivariant polynomial automorphisms of the binary forms. Annales de l'Institut Fourier, Tome 47 (1997) no. 2, pp. 585-597. doi: 10.5802/aif.1574
[1] , Braids and Permutations, Ann. Math., 48 (1947), 643-649. | Zbl | MR
[2] , Algebraic Geometry, GTM, 52, Springer-Verlag, Berlin-New York (1977). | Zbl | MR
[3] , , , , Local Properties of Algebraic Group Actions, In : H. Kraft, P. Slodowy, T.A. Springer : Algebraische Transformations-gruppen und Invariantentheorie, Algebraic Transformation Groups and Invariant Theory, DMV Seminar Band, 13, Birkhäuser (1989), 63-75. | Zbl | MR
[4] , , , The Picard Group of a G-Variety, In : H. Kraft, P. Slodowy, T.A. Springer : Algebraische Transformationsgruppen und Invarianten-theorie, Algebraic Transformation Groups and Invariant Theory, DMV Seminar Band, 13, Birkhäuser (1989), 77-87. | Zbl | MR
[5] , Geometrische Methoden in der Invariantentheorie, Aspekte der Mathematik, D1, Vieweg (1985). | Zbl
[6] , Klassische Invariantentheorie : Eine Einführung, In : H. Kraft, P. Slodowy, T.A. Springer : Algebraische Transformationsgruppen und Invarianten-theorie, Algebraic Transformation Groups and Invariant Theory, DMV Seminar Band, 13, Birkhäuser (1989), 41-62. | Zbl | MR
[7] , Algebraic Automorphisms of Affine Space, In : “Topological Methods in Algebraic Transformation Groups” ; Progress in Mathematics, vol. 80, Birkhäuser Verlag Boston Basel Berlin (1989), 81-105. | Zbl | MR
[8] , , Reductive Group Actions with one-dimensional Quotient, Publ. Math. IHES, 76 (1992). | Zbl | MR | Numdam
[9] , Equivariant Polynomial Automorphisms, Ph.D. Thesis Basel (1996).
[10] , Around the 13th Hilbert Problem for Algebraic Functions, Israel Mathematical Conference Proceedings, vol. 9 (1996), 307-327. | Zbl | MR
[11] , Slices étales, Bull. Soc. Math. France, Mémoire, 33 (1973), 81-105. | Numdam | Zbl | MR | EuDML
[12] , Cohomologie Galoisienne, Lecture Notes in Math., 5, Springer-Verlag, Berlin New York (1964). | Zbl
[13] , Local Fields, GTM, 67, Springer-Verlag, Berlin New York (1979). | Zbl
[14] , Algebraic Topology, Springer-Verlag, Berlin New York (1966). | Zbl | MR
[15] , The Classical Groups, Their Invariants and Representations, 2nd., ed., Princeton Univ. Press, Princeton, N.J., 1946.
Cité par Sources :



