Function spaces on the Olśhanskiĭsemigroup and the Gel'fand-Gindikin program
Annales de l'Institut Fourier, Volume 46 (1996) no. 3, p. 689-722
For the scalar holomorphic discrete series representations of SU (2,2) and their analytic continuations, we study the spectrum of a non-compact real form of the maximal compact subgroup inside SU (2,2). We construct a Cayley transform between the Ol’shanskiĭ semigroup having U(1,1) as Šilov boundary and an open dense subdomain of the Hermitian symmetric space for SU (2,2). This allows calculating the composition series in terms of harmonic analysis on U(1,1). In particular we show that the Ol’shanskiĭ Hardy space for U(1,1) is different from the classical Hardy space for U(2); this provides a counterexample to a statement in a paper by Gindikin.
Nous étudions la série discrète holomorphe de SU (2,2) et son prolongement analytique par restriction à la forme réelle non-compacte SU ( 1 , 1 ) × U ( 1 , 1 ). Nous construisons pour cela une transformation de Cayley entre le sous semi-groupe de Ol’shanskiĭ de GL (2,) ayant U(1,1) comme frontière de Šilov et un ouvert dense du domaine tube de SU (2,2). Nous déterminons ainsi la décomposition de la restriction à SU ( 1 , 1 ) × U ( 1 , 1 ) d’une représentation de la série discrète holomorphe. En particulier nous montrons que la représentation de SU ( 1 , 1 ) × U ( 1 , 1 ) dans l’espace de Hardy construit par Gel’fand et Gindikin n’est pas obtenue par restriction d’une représentation de la série discrète holomorphe de SU (2,2). Ceci infirme un résultat de Gindikin.
@article{AIF_1996__46_3_689_0,
     author = {Koufany, Khalid and \O rsted, Bent},
     title = {Function spaces on the Ol\'shanski\u\i semigroup and the Gel'fand-Gindikin program},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {46},
     number = {3},
     year = {1996},
     pages = {689-722},
     doi = {10.5802/aif.1528},
     zbl = {0853.22010},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_1996__46_3_689_0}
}
Koufany, Khalid; Ørsted, Bent. Function spaces on the Olśhanskiĭsemigroup and the Gel'fand-Gindikin program. Annales de l'Institut Fourier, Volume 46 (1996) no. 3, pp. 689-722. doi : 10.5802/aif.1528. https://aif.centre-mersenne.org/item/AIF_1996__46_3_689_0/

[1]J. Faraut, Hardy spaces in non-commutative harmonic analysis, Summer School, Tuczno, 1994.

[2]J. Faraut and A. Korányi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Clarendon Press, 1994. | MR 98g:17031 | Zbl 0841.43002

[3]I.M. Gel'Fand and S.G. Gindikin, Complex manifolds whose skeletons are semi-simple real Lie groups, and analytic discrete series of representations, Funct. Anal. Appl., 11 (1977), 258-265. | Zbl 0449.22018

[4]S.G. Gindikin, Generalized conformal structures on classical real Lie groups and related problems on the theory of representations, C. R. Acad. Sci. Paris, 315 (1992), 675-679. | MR 93h:32045 | Zbl 0788.22008

[5]S.G. Gindikin, Fourier transform and Hardy spaces of ∂-cohomology in tube domains, C. R. Acad. Sci. Paris, 315 (1992), 1139-1143. | MR 93m:32006 | Zbl 0771.32001

[6]H. Hecht, The characters of some representations of Harish-Chandra, Math. Ann., 210 (1976), 213-226. | MR 55 #573 | Zbl 0301.22009

[7]J. Hilgert, A note on Howe's oscillator semigroup, Annal. Inst. Fourier, 39-3 (1989), 663-688. | Numdam | MR 91b:22008 | Zbl 0674.47029

[8]J. Hilgert and K.-H. Neeb, Lie Semigroups and theirs Applications, Lecture Notes in Math. Springer-Verlag, 1993, t. 1552. | MR 96j:22002 | Zbl 0807.22001

[9]J. Hilgert and H. Ólafsson, Analytic continuations of representations, the solvable case, Jap. Journal of Math., 18 (1992), 213-290. | Zbl 0788.22014

[10]R. Howe, The Oscillator Semigroup, Proc. Symp. Pure Math., 48 (1988), 61-132. | MR 90f:22014 | Zbl 0687.47034

[11]H.P. Jakobsen and M. Vergne, Wave and Dirac operators, and representations of the conformal group, J. Funct. Anal., 24 (1977), 52-106. | MR 55 #12876 | Zbl 0361.22012

[12]H.P. Jacobsen and M. Vergne, Restrictions and expansions of holomorphic representations, J. Funct. Anal., 34 (1979), 29-53. | MR 80m:22020 | Zbl 0433.22011

[13]M. Kashiwara and M. Vergne, K-types and singular spectrum, Lecture Note in Math., Springer-Verlag t. 728, 1978.

[14]K. Koufany et B. Ørsted, Espace de Hardy sur le semi-groupe métaplectique, C. R. Acad. Sci. Paris, 322, Série I (1996), 113-116. | MR 96m:22017 | Zbl 0880.22003

[15]K. Koufany and B. Ørsted, Hardy spaces on two-sheeted covering semigroups, in preparation, 1996.

[16]O. Loos, Bounded symmetric domains and Jordan pairs, Lecture notes, University of California, Irvine, 1977. | Zbl 0228.32012

[17]G.I. Ol'Shanskiĭ, Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series, Funct. Anal. Appl., 15 (1982), 275-285. | Zbl 0503.22011

[18]G.I. Ol'Shanskiĭ, Complex Lie semigroups, Hardy spaces and the Gel'fand Gindikin program, Topics in group theory and homological algebra, Yaroslavl University Press, 1982, p. 85-98 (Russian); English translation in Differential Geomerty and its Applications, 1 (1991), 235-246. | Zbl 0789.22011

[19]B. Ørsted, Composition series for analytic continuations of holomorphic discrete series representations of SU(n,n), Trans. Amer. Math. Soc., 260 (1980), 563-573. | MR 81g:22020 | Zbl 0439.22017

[20]B. Ørsted, The conformal invariance of Huygen's principle, J. Diff. Geom., 16 (1981), 1-9. | MR 83c:58080 | Zbl 0447.35059

[21] S. Paneitz and I. Segal, Quantization of wave equations and hermitian structures in partial differential varieties, Proc. Nat. Acad. Sci. USA, 77 (1980), 6943-6947. | MR 82g:81040 | Zbl 0469.35065

[22]H. Rossi and M. Vergne, Analytic continuation of the holomorphic discrete series, Acta Math., 136 (1976), 1-59. | MR 58 #1032 | Zbl 0356.32020

[23]B. Speh, Degenerate series representations of the universal covering group of SU(2,2), J. Funct. Anal., 33 (1978), 95-118. | MR 80j:22017 | Zbl 0415.22012

[24]R.J. Stanton, Analytic extension of the holomorphic discrete series, Amer. J. of Math., 108 (1986), 1411-1424. | MR 88b:22013 | Zbl 0626.43008

[25]H. Weyl, The classical groups, Princeton Univ. Press, Princeton, N.J., 1946.