We describe a spectral sequence for computing Leibniz cohomology for Lie algebras.
Nous décrivons une suite spectrale pour le calcul de la cohomologie de Leibniz sur les algèbres de Lie.
@article{AIF_1994__44_2_401_0,
author = {Pirashvili, Teimuraz},
title = {On {Leibniz} homology},
journal = {Annales de l'Institut Fourier},
pages = {401--411},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
volume = {44},
number = {2},
year = {1994},
doi = {10.5802/aif.1403},
zbl = {0821.17023},
mrnumber = {96f:17030},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1403/}
}
TY - JOUR AU - Pirashvili, Teimuraz TI - On Leibniz homology JO - Annales de l'Institut Fourier PY - 1994 SP - 401 EP - 411 VL - 44 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1403/ DO - 10.5802/aif.1403 LA - en ID - AIF_1994__44_2_401_0 ER -
Pirashvili, Teimuraz. On Leibniz homology. Annales de l'Institut Fourier, Tome 44 (1994) no. 2, pp. 401-411. doi: 10.5802/aif.1403
[D], Cohomologie des algèbres de Lie nilpotentes. Acta Sci. Math. Szeged., 16 (1955), 246-250. | Zbl | MR
[HS], and , A course in homological algebra (Grad. Texts in Math., vol. 4). Berlin, Heidelberg, New York, Springer Verlag, 1971. | Zbl | MR
[K], Homologie et cohomologie des algèbres de Lie. Bull. Soc. Math. France, 78 (1950), 65-127. | Zbl | MR | Numdam
[CH], Cyclic homology. (Grund. Math. Wiss., Bd. 301), Berlin, Heidelberg, New York, Springer Verlag, 1992. | Zbl | MR
[LP], and , Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann., 296 (1993), 139-158. | Zbl | MR
[N], in preparation.
[Q], On the (co)-homology of commutative rings. Proc. Symp. Pure Math., 17 (1970), 65-87. | Zbl | MR
[T], Cohomologies of parabolic Lie algebras, Mathematical notes of the Academy of Sciences of the USSR (Translations), 12 (1972), 585-588. | Zbl | MR
Cité par Sources :



