Soient et deux formes paraboliques pour le sous-groupe de , propre pour tous les opérateurs de Hecke, de caractère respectivement et , de poids et . Définissons le produit de Rankin de et par la formule
En supposant que et sont ordinaires en , nombre premier , nous allons construire une fonction analytique -adique de trois variables qui interpole les valeurs
en regardant tous les ingrédients comme variables, où est le produit de Petersson de .
Let and be holomorphic common eigenforms of all Hecke operators for the congruence subgroup of with “Nebentypus” character and and of weight and , respectively. Define the Rankin product of and by
Supposing and to be ordinary at a prime , we shall construct a -adically analytic -function of three variables which interpolate the values for integers with by regarding all the ingredients , and as variables. Here is the Petersson self-inner product of .
@article{AIF_1988__38_3_1_0, author = {Hida, Haruzo}, title = {A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. {II}}, journal = {Annales de l'Institut Fourier}, pages = {1--83}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {38}, number = {3}, year = {1988}, doi = {10.5802/aif.1141}, zbl = {0645.10028}, mrnumber = {89k:11120}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1141/} }
TY - JOUR AU - Hida, Haruzo TI - A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II JO - Annales de l'Institut Fourier PY - 1988 SP - 1 EP - 83 VL - 38 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1141/ DO - 10.5802/aif.1141 LA - en ID - AIF_1988__38_3_1_0 ER -
%0 Journal Article %A Hida, Haruzo %T A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II %J Annales de l'Institut Fourier %D 1988 %P 1-83 %V 38 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1141/ %R 10.5802/aif.1141 %G en %F AIF_1988__38_3_1_0
Hida, Haruzo. A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II. Annales de l'Institut Fourier, Tome 38 (1988) no. 3, pp. 1-83. doi : 10.5802/aif.1141. https://aif.centre-mersenne.org/articles/10.5802/aif.1141/
[1] Algèbre, Paris, Hermann, 1970.
,[2] Algèbre commutative, Paris, Hermann, 1961.
,[3] Représentations cuspidales du groupe linéaire, Ann. Scient. Ec. Norm. Sup., 4e-serie, 17 (1984), 191-225. | Numdam | MR | Zbl
,[4] On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314. | MR | Zbl
,[5] Les constantes des équations fonctionnelles des fonctions L, In "Modular functions of one variables II," Lectures notes in Math., 349 (1973), 501-595. | MR | Zbl
,[6] Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., 33 (1979), part 2, 313-346. | MR | Zbl
,[7] Automorphic forms on adele groups, Ann. of Math. Studies No. 83, Princeton, Princeton Univ. Press, 1975. | MR | Zbl
,[8] A relation between automorphic representations of GL(2) and GL(3), Ann. Scient. Ec. Norm. Sup., 4e-serie, 11 (1978), 471-542. | Numdam | MR | Zbl
and ,[9] Theorie der Eisensteinschen Reiben höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Hamb., 5 (1927), 199-224 (Werke No. 24). | JFM
,[10] Congruences of cusp forms and special values of their zeta functions, Inventiones Math., 63 (1981), 225-261. | MR | Zbl
,[11] A p-adic measure attached to the zeta functions associated with two elliptic modular forms, I, Inventiones Math., 79 (1985), 159-195. | MR | Zbl
,[12] Congruences of cusp forms and Hecke algebras, Séminaire de Théorie des Nombres, Paris, 1983-1984, Progress in Math., 59, 133-146. | MR | Zbl
,[13] Iwasawa modules attached to congruences of cusp forms, Ann. Scient. Ec. Norm. Sup., 4e-série, 19 (1986), 231-273. | Numdam | MR | Zbl
,[14] Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inventiones Math., 85 (1986), 545-613. | MR | Zbl
,[15] Hecke algebras for GL1 and GL2, Séminaire de Théorie des Nombres, Paris 1984-1985, Progress in Math., 63 (1986), 131-163. | MR | Zbl
,[16] Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math., 110 (1988), 323-382. | MR | Zbl
,[17] Automorphic forms on GL(2), Lecture notes in Math., 114, Berlin-Heidelberg-New York, Springer, 1970. | MR | Zbl
and ,[18] Automorphic forms on GL(2), II, Lecture notes in Math., 278, Berlin-Heidelberg-New York, Springer, 1972. | MR | Zbl
,[19] Higher congruences between modular forms, Ann. of Math., 101 (1975), 332-367. | MR | Zbl
,[20] p-adic interpolation of real analytic Eisenstein series, Ann. of Math., 104 (1976), 459-571. | MR | Zbl
,[21] Cyclotomic fields, Grad. Texts in Math., 59, Berlin-Hiedelberg-New York, Springer, 1978. | MR | Zbl
,[22] Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S., 47 (1977), 33-186. | Numdam | MR | Zbl
,[23] On p-adic analytic families of Galois representations, Compositio Math., 59 (1986), 231-264. | Numdam | MR | Zbl
and ,[24] Le prolongement p-adic analytique des fonctions de L de Rankin, I, C.R. Acad. Sc. Paris, 295 (1982), 51-53, II :idem 227-230. | MR | Zbl
,[25] Fonctions L p-adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. London Math. Soc. | Zbl
,[26] Formes modulaires et fonctions zêta p-adiques, In "Modular functions of one variable III", Lecture notes in Math. 350 (1973), pp. 191-268. | MR | Zbl
,[27] Introduction to the arithmetic theory of automorphic functions, Tokyo-Princeton, Iwanami Shoten and Princeton Univ. Press, 1971. | Zbl
,[28] On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., (3) 31 (1975), 79-98. | MR | Zbl
,[29] On some arithmetic properties of modular forms of one and several variables, Ann. of Math., 102 (1975), 491-515. | MR | Zbl
,[30] The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804. | MR | Zbl
,[31] On the periods of modular forms, Math. Ann., 229 (1977), 211-221. | MR | Zbl
,[32] Confluent hypergeometric functions on Tube domains, Math. Ann., 260 (1982), 269-302. | MR | Zbl
,[33] Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l'algèbre de Hecke, Bull. Soc. Math. France, 115 (1987), 329-360. | Numdam | MR | Zbl
,[33] Basic number theory, Berlin-Heiderberg-New York, Springer, 1974. | MR | Zbl
,Cité par Sources :