A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II
Annales de l'Institut Fourier, Tome 38 (1988) no. 3, pp. 1-83.

Soient f= n=1 a(n)q n et g= n=1 b(n)q n deux formes paraboliques pour le sous-groupe Γ 0 (N) de SL 2 (Z), propre pour tous les opérateurs de Hecke, de caractère respectivement ψ et ξ, de poids k et . Définissons le produit de Rankin de f et g par la formule

𝒟N(s,f,g)=(n=1ψξ(n)nk+-2s-2)(n=1a(n)b(n)n-s).

En supposant que f et g sont ordinaires en p, nombre premier 5, nous allons construire une fonction L analytique p-adique de trois variables qui interpole les valeurs

𝒟N(+m,f,g)π+2m+1<f,f>pourlesentiersmtelsque0m<k-1,

en regardant tous les ingrédients comme variables, où f,f est le produit de Petersson de f.

Let f= n=1 a(n)q n and g= n=1 b(n)q n be holomorphic common eigenforms of all Hecke operators for the congruence subgroup Γ 0 (N) of SL 2 (Z) with “Nebentypus” character ψ and ξ and of weight k and , respectively. Define the Rankin product of f and g by

𝒟N(s,f,g)=(n=1ψξ(n)nk+-2s-2)(n=1a(n)b(n)n-s).

Supposing f and g to be ordinary at a prime p5, we shall construct a p-adically analytic L-function of three variables which interpolate the values 𝒟 N (+m,f,g) π +2m+1 <f,f> for integers m with 0m<k-1, by regarding all the ingredients m, f and g as variables. Here f,f is the Petersson self-inner product of f.

@article{AIF_1988__38_3_1_0,
     author = {Hida, Haruzo},
     title = {A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. {II}},
     journal = {Annales de l'Institut Fourier},
     pages = {1--83},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {38},
     number = {3},
     year = {1988},
     doi = {10.5802/aif.1141},
     zbl = {0645.10028},
     mrnumber = {89k:11120},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1141/}
}
TY  - JOUR
AU  - Hida, Haruzo
TI  - A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II
JO  - Annales de l'Institut Fourier
PY  - 1988
SP  - 1
EP  - 83
VL  - 38
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.1141/
DO  - 10.5802/aif.1141
LA  - en
ID  - AIF_1988__38_3_1_0
ER  - 
%0 Journal Article
%A Hida, Haruzo
%T A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II
%J Annales de l'Institut Fourier
%D 1988
%P 1-83
%V 38
%N 3
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.1141/
%R 10.5802/aif.1141
%G en
%F AIF_1988__38_3_1_0
Hida, Haruzo. A $p$-adic measure attached to the zeta functions associated with two elliptic modular forms. II. Annales de l'Institut Fourier, Tome 38 (1988) no. 3, pp. 1-83. doi : 10.5802/aif.1141. https://aif.centre-mersenne.org/articles/10.5802/aif.1141/

[1] N. Bourbaki, Algèbre, Paris, Hermann, 1970.

[2] N. Bourbaki, Algèbre commutative, Paris, Hermann, 1961.

[3] H. Carayol, Représentations cuspidales du groupe linéaire, Ann. Scient. Ec. Norm. Sup., 4e-serie, 17 (1984), 191-225. | Numdam | MR | Zbl

[4] W. Casselman, On some results of Atkin and Lehner, Math. Ann., 201 (1973), 301-314. | MR | Zbl

[5] P. Deligne, Les constantes des équations fonctionnelles des fonctions L, In "Modular functions of one variables II," Lectures notes in Math., 349 (1973), 501-595. | MR | Zbl

[6] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., 33 (1979), part 2, 313-346. | MR | Zbl

[7] S. S. Gelbart, Automorphic forms on adele groups, Ann. of Math. Studies No. 83, Princeton, Princeton Univ. Press, 1975. | MR | Zbl

[8] S. S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Scient. Ec. Norm. Sup., 4e-serie, 11 (1978), 471-542. | Numdam | MR | Zbl

[9] E. Hecke, Theorie der Eisensteinschen Reiben höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik, Abh. Math. Hamb., 5 (1927), 199-224 (Werke No. 24). | JFM

[10] H. Hida, Congruences of cusp forms and special values of their zeta functions, Inventiones Math., 63 (1981), 225-261. | MR | Zbl

[11] H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms, I, Inventiones Math., 79 (1985), 159-195. | MR | Zbl

[12] H. Hida, Congruences of cusp forms and Hecke algebras, Séminaire de Théorie des Nombres, Paris, 1983-1984, Progress in Math., 59, 133-146. | MR | Zbl

[13] H. Hida, Iwasawa modules attached to congruences of cusp forms, Ann. Scient. Ec. Norm. Sup., 4e-série, 19 (1986), 231-273. | Numdam | MR | Zbl

[14] H. Hida, Galois representations into GL2(Zp[[X]]) attached to ordinary cusp forms, Inventiones Math., 85 (1986), 545-613. | MR | Zbl

[15] H. Hida, Hecke algebras for GL1 and GL2, Séminaire de Théorie des Nombres, Paris 1984-1985, Progress in Math., 63 (1986), 131-163. | MR | Zbl

[16] H. Hida, Modules of congruence of Hecke algebras and L-functions associated with cusp forms, Amer. J. Math., 110 (1988), 323-382. | MR | Zbl

[17] H. Jacquet and R.P. Langlands, Automorphic forms on GL(2), Lecture notes in Math., 114, Berlin-Heidelberg-New York, Springer, 1970. | MR | Zbl

[18] H. Jacquet, Automorphic forms on GL(2), II, Lecture notes in Math., 278, Berlin-Heidelberg-New York, Springer, 1972. | MR | Zbl

[19] N. M. Katz, Higher congruences between modular forms, Ann. of Math., 101 (1975), 332-367. | MR | Zbl

[20] N. M. Katz, p-adic interpolation of real analytic Eisenstein series, Ann. of Math., 104 (1976), 459-571. | MR | Zbl

[21] S. Lang, Cyclotomic fields, Grad. Texts in Math., 59, Berlin-Hiedelberg-New York, Springer, 1978. | MR | Zbl

[22] B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. I.H.E.S., 47 (1977), 33-186. | Numdam | MR | Zbl

[23] B. Mazur and A. Wiles, On p-adic analytic families of Galois representations, Compositio Math., 59 (1986), 231-264. | Numdam | MR | Zbl

[24] A. A. Panciskin, Le prolongement p-adic analytique des fonctions de L de Rankin, I, C.R. Acad. Sc. Paris, 295 (1982), 51-53, II :idem 227-230. | MR | Zbl

[25] B. Perrin-Riou, Fonctions L p-adiques associées à une forme modulaire et à un corps quadratique imaginaire, J. London Math. Soc. | Zbl

[26] J.-P. Serre, Formes modulaires et fonctions zêta p-adiques, In "Modular functions of one variable III", Lecture notes in Math. 350 (1973), pp. 191-268. | MR | Zbl

[27] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Tokyo-Princeton, Iwanami Shoten and Princeton Univ. Press, 1971. | Zbl

[28] G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc., (3) 31 (1975), 79-98. | MR | Zbl

[29] G. Shimura, On some arithmetic properties of modular forms of one and several variables, Ann. of Math., 102 (1975), 491-515. | MR | Zbl

[30] G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., 29 (1976), 783-804. | MR | Zbl

[31] G. Shimura, On the periods of modular forms, Math. Ann., 229 (1977), 211-221. | MR | Zbl

[32] G. Shimura, Confluent hypergeometric functions on Tube domains, Math. Ann., 260 (1982), 269-302. | MR | Zbl

[33] J. Tilouine, Un sous-groupe p-divisible de la jacobienne de X1(Npr) comme module sur l'algèbre de Hecke, Bull. Soc. Math. France, 115 (1987), 329-360. | Numdam | MR | Zbl

[33] A. Weil, Basic number theory, Berlin-Heiderberg-New York, Springer, 1974. | MR | Zbl

Cité par Sources :