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A P-ADIC MEASURE ATTACHED
TO THE ZETA FUNCTIONS ASSOCIATED
WITH TWO ELLIPTIC MODULAR FORMS II

by Haruzo HIDA

0. Introduction.

Let f be a cusp form for I'o(N) of weight £ > 2 with character
¥ : (F/NZ)* — C*, and let g be another cusp form for I'¢(V) of weight
£ < k with character £. Write their Fourier expansion as

f= i a(n)e(nz) and g = f: b(n)e(nz) for e(z) = exp(2wiz),
n=1 n=1

and define Dirichlet series of f and g by

Du(s,fi9) = (3 wemnt+2-2) (3 a(mpmn=).
n=1 n=1 -
(n,N)=1

As in the first part [11], our object of study is the p-adic nature of the
algebraic numbers :

DN(e + m, fa g)
7I.H-i."m+1 < f,f >

(0.1) for integers m with 0 <m < k — £.

In particular, we shall construct a p-adically analytic L-function of three
variables, which interpolates the values (0.1) by regarding all the ingredi-
ents m, f and g as variables.

Key-words : p-adic measure - zeta function — Modular form - p-adic L-function.
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Let p > 5 be a prime number. Let O be a valuation ring finite flat
over Z,. We have constructed in [13] and [14] the universal Hecke algebra
h(N;O), for each positive integer N prime to p, as a subalgebra of the
endomorphism algebra of p-adic cusp forms of level N with coefficients
in O, topologically generated by Hecke operators T'(n)(n > 0). Then, the
ordinary part h°(N; O) is shown to be finite flat over the Iwasawa algebra
A = O[[I']] of the topological group I' = 1 + pZ,. We fix an algebraic
closure Eip of the p-adic field Q, and let Q denote the algebraic closure of
Q inside C. We shall assume O to be a subring of Q, and fix once and for

all an embedding i : Q — 6,,. For each finite order character ¢ : I"' — 6)(
and for each integer k, the continuous character of I' into Q, given by
v + ~*¢(y) induces an O-algebra homomorphism Py of A into Q,. Let
7 be a normal integral domain finite flat over A. Replacing O by its finite
extension in -Q-p if necessary, we may assume that O is integra.ll)_r_closed in
Z. Let X(ZI) = Homo-ag(Z,Q,); i-e., X(Z) is the space of all Q,-valued
points of Spec(Z),0. Let Xag(Z) be the dense subset of X'(Z) (under the
Zariski topology) consisting of points of X(Z) whose restriction to A is of
the form Py . with k > 0. We put

Xalg(I; O) = Xalg(I) n HomO—alg(Ia 0)
and X(Z;0) = X(Z) N Homp_ag(Z, 0).

For P € X,g(Z), the integer k and the character ¢ defined by P|y = P,
will be called the weight of P and the character of P. The weight (resp.
the character) of P will be denoted by k(P) (resp. ep). The exponent in
p of the conductor of ep will be denoted by 7(P) (when ep is trivial,
we shall agree to put r(P) = 1). We fix a A-algebra homomorphism
A : h°(N;0) — I. Then A(T'(n)) is an element of Z, and thus we can
consider it as a function on X(Z) with values in Q-p. We shall write its
value A(T'(n))(P) as ap(n) € Q,. Then it is seen in [14] that there is a
family of cusp forms fp € Si(p)(I'1 (N p(P))) parametrized by the points
P € X,g(Z)(k(P) > 2) such that the image under i : Q — Q,, of each n-th
coefficient of fp is given by ap(n). Moreover, fp is a common eigenform
of all Hecke operators satisfying f|T'(n) = ap(n)f and |ap(p)|, = 1. The
function fp is called the cusp form belonging to A at P.

For simplicity, we shall suppose that N = 1. We take another A-
algebra homomorphism X' : h°(1; 0) — Z. We write

99 = Y ba(n)g" € Siq)(T1(p"?))

n=1
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for the cusp form belonging to \' at Q € X,g(Z). Let ¥p and £g be
the characters of fp and gg, respectively. Then it is known that there
exist characters ¥,¢ : (Z/pZ)* — Q such that ¥p = epppw—*P) and

€p = epbw™ P for all P € X,g(Z), where w is the Teichmiiller character
modulo p.

For each normalized common eigenform f € Sx(I';(p")), as is known
by the theory of new forms, there exists a unique primitive form fo whose
eigenvalue for T'(£) coincides with that of f for almost all primes £. This f,
is called the primitive form associated with f. We define complex numbers

o(f), o/(f) and W(f) by

o]

> al", fo)p ™ = [(1 - a(f)p~*)(1 - &/ (H)p~*)]
n=0
and

il o) =WINR,

where fo|T(n) = a(n, fo)fo and C is the conductor of f (i.e. the smallest
possible level of fo) and ff(z) = fo(—Z). For two normalized common
eigenforms f and g, we take the associated primitive form f, and go and
define the primitive Rankin product of f and g by

D(S, f1 g) = DC(f,g)(sa an gO),

where C(f, g) is the least common multiple of the conductors of f and g.

We may suppose that a(gq) = bo(p), a(fp) = ap(p) and a(gg) = a(ge)”
for the complex conjugation p. Then we define some Euler factors by

sp) = <¢p(p)p’°‘P’“1> (1 _ «l}P(p)p’“(P”"’) ,
o(fp)? o(fp)?

, Ep(p)p° !
={1--——
Pl ( a(gg)a(fp))

x (1o (fr)a(gg)p™*)(1 - Ep(p)e (fp) (93)P™°),

s—1

no=l1-—F | -1- s—k(Q)
Epq(s) (l a(gg)a(fp)) 1 - (a(gQ)/a(fpP))p ,

Epq(s) = Epo(s)Ep q(s).

Let Z® 0I®e A be the profinite completion of the tensor product Z®oZ®0
A. Any element F € ZQZ®A can be considered as a p-adic analytic function
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~ on X(I) x X(Z) x X(A). We shall construct an element D of the quotient
field of ZOI®A whose value at (P,Q,R) € Xaig(T) x Xaig(T) x Xag(A)
gives essentially the algebraic number

D(k(Q) + k(R), fr,95)/UP,Q, R).
Here, as the transcendental factor of D, we shall take
QP,Q, R) = 2mi) Q2B )MP*1a? < £, £ > G(éo),

where f3 is the primitive form associated with fp and G(&g) is the
Gauss sum for {g. (We understand that G({g) = 1 if {u = id.) This
transcendental factor looks complicated but has an intrinsic meaning, which
will be explained in § 4 in the text in the language of motives of Deligne.
More precisely, our result in a simplest case is as follows :

THEOREM 1. — There exists a unique function D in the quotient
field of I®TI®A on X (I) x X(I) x X(A) with the following interpolation
property : For a point (P,Q, R) € Xag(Z) X Xag(T) x Xaig(A), we suppose
that ¥, = g = er = id, and k(P) — k(Q) > k(R) > 0, k(Q) > 2 and
k(P) > 2. Then D(P,Q, R) is finite and

(02) D(P,Q,R)=
cwS(P) ' E(P,Q, RYD(K(Q) + k(R), fp, g|w* ™) /P, Q, R),

where E(P,Q, R) = Ep,o(K(Q)+k(R)), ¢ = (~)MT(k(Q)+k(R)T(k(R)
+1) and w = W(gq)W (fp)~!. Moreover, if H € T annihilates the module
of congruence of ) (for definition of this module, see § 4 in the text), then
H(P)D(P,Q, R) is p-adic analytic; namely, HD € I®I®A as a function
on X(I) x X(Z) x X(A).

Now we restrict D(P,Q, R) to X(Z)x X (Z)x Py for Py = Py iq € X(A)
and write this function as D(P, Q). We know that

E"(P,Q) = Ep4(k(Q)) =1 - a(gq)/a(fPp)
=1=-X(T®)(Q)/NT(p))(P)

gives an element in Z ® Z (since A\(T'(p)) € I*). When A = X,
E"(P,Q) has a trivial zero at the diagonal divisor A = {(P,P) €
X(I))|P € X(I)}. Now we ask whether the function D'(P,Q) =
D(P,Q)/E"(P,Q) has a pole at A or not. To give an answer to this ques-
tion, we fix a topological generator u of I' and identify A®A with the power
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series ring O[[X, Y]] naturally. We also regard A®QA as a subalgebra of I®Z.
Then A is defined by the equation X =Y.

THEOREM II. — Suppose that A = X'. Then D' has a simple pole at
A ; namely, we have

(X ~Y)D')(P,Q)lp=q = (1 + Y(P))2= - log(u)
p

if P is non-critical.

(We say that P is non-critical if P is outside the support of the module of
congruence of A in X(7)). '

Here are some remarks about the theorems : The p-adic interpolation
along the cyclotomic line (i.e. the line of the variable R) of our type of
zeta functions was first obtained by Panciskin [24] in a different method
from ours; thus, our result extends the domain of the interpolation to the
spectrum of the Hecke algebras. We shall give a formulation of Theorems
I and IT in § 5 Example d in full generality, where we shall state the result
valid for A and A’ with arbitrary level and give the similar evaluation
of the function D(P,Q, R) at any algebraic point without assuming that
¥p = &g = er = id. Since every primitive from f with |a(p)|, = 1 belongs
to a homomorphism A of above type, Theorem I is general enough to give
a p-adic interpolation of the values (0.1) for any pair of primitive forms
f and g with |a(p)|, = |b(p)|p = 1 of different weight. If Z = A, we may
identify AQA®A with O[[X,Y, Z]] by fixing a topological generator u of
T". Then the function D(P,Q,R) is given by a quotient of power series
F(X,Y,Z)/H(X) so that

D(Pk,E,Pl,s,Pm,W) =

F(e(u)u®* —1,6(u)u’ — 1,y(u)u™ — 1)/ H(e(u)u* —1).
Thus in this case, the p-adic L-function D is a usual Iwasawa function
of three variables. However, there are examples of A whose values cannot
be contained in A [12, § 4]. Thus, in general, D may not be an Iwasawa
function but is a function on a covering space (of finite degree) over

Spec(O|[[X,Y, Z]]). Theorem II may be considered as a p-adic analogue
of the well known residue formula [30, 2.5] :

Res,=xD(s, f, f*) = T(k)1C22%* x**! < f, f >ry0) (f C >2),

where C is the conductor of the primitive form f.
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We shall now give a summary of the content of each section. In § 1,
we give a short account of several operations in the space of p-adic modular
forms which will be used to define the convolution product of p-adic
measures. After that we shall prove the duality between the space of p-
adic modular forms and Hecke algebras (Th. 1.3). In § 2, we shall give
a characterization of the space of p-adic cusp forms (Th. 2.2) which may
be viewed as a p-adic analogue of the classical cuspidal condition. In § 3,
we shall generalize the measure theory over A to that over the integral
extension Z. After giving a brief summary of the theory of modules of
congruence in § 4, we shall state our main result in full generality in § 5.
In fact, our method is applicable to a rather wide class of measures p,
satisfying certain algebraicity conditions (cf. (5.1 a,b,c)) on a p-adic space
X with values in the space of p-adic modular forms. We shall establish
a p-adic interpolation of the values D(m, fp, u(¢)) by varying m, locally
constant functions ¢ on X and P € X,4(Z) (Th. 5.1). From this general
result, we shall deduce Theorems I and II as well as a generalization of the
result in the first part [11] on theta measures. After giving in § 6 some facts
on real analytic Eisenstein series for our later use, we develop a theory of
p-adic Rankin convolution of measures in §§ 7 and 8. The final section § 9
is devoted to the proof of the main results.

In the first draft of this paper, the values of the p-adic L-function
D(P,Q, R) as in Th. I was given in a much more complicated form without
uniformity. The simplification of the expression, especially the introduction
of the Euler factor E(P,Q, R), is due to B. Perrin-Riou. The author is very
much thankful for her careful reading of the manuscript.

Notation. — We shall use the notation introduced in [11] and [14].

For each matrix a = (:2 € GLy(R) with det(a) > 0, we de-

fine an operation (of weight k € Z) on functions on the Poincaré up-

per half plane $ with values in C by (f|ra)(z) = det(a)¥/?f (Z—;—f—dé)
(cz + d)~*. For each congruence subgroup A of SL»(Z), we denote by

M (A) (resp. Sk(A)) the space of holomorphic modular forms (resp. holo-
morphic cusp forms) for A of weight k. For each character 9 : A — C* of
finite order, we put

M (A, 9) = {f € Mi(Ker(¥)) | fley =9(7)f for all y € A},
Sk(A,9) = Mi(A, ) N Sp(Ker(9)).

For each f € Si(A,v) and g € Mg (A, 1), the Petersson inner product is
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defined by

< fig>a= /A . f@)g(2)y*2dwdy.

When A = T'g(N), we write < f,g >n for < f,g >ry(n) - The Fourier
expansion of each f € My(T'1(N)) is always written as

o0
f= Z a(n, f)g" for q = exp(2miz).
n=0
Throughout the paper, we fix an embedding i : Q — Qp. Thus every
algebraic number can be viewed as a complex number as well as a p-adic

number in 61, uniquely. The normalized p-adic absolute value of z € 61,
will be written as |z|,.

Contents
0. Introduction. ’ 1
1. Hecke algebras and p-adic modular forms. 7
2. The projection to the ordinary part. 18
3. A generalization of p-adic measure theory. . 24
4. Modules of congruences. . . : 28
5. Arithmetic measures and the main results. 36
6. Real analytic Eisenstein series and the holomorphic projection. 56
7. Duality theorem. 64
8. Convoluted measures. 70
9. Proof of Theorems 5.1, 5.1d and 5.1d’. 76

1. Hecke algebras and p—adié modular forms.

We shall give here a brief account of the theory of p-adic modular
forms and their Hecke algebras. We shall refer to our previous papers [11],
[13] and [14] for the results states here without proof.

Let A be a congruence subgroup of SLz(Z) and for any subalgebra
A of C, we put
Mi(8; 4) = {f € Mx(A) | aln, f) € A for all n}
Sk(A;4) = Sp(A) N Mi(A;4) .
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For each (abelian) character of finite order ¥ : A — A%, put

Mi(A,9 : A) = Mi(Ker(y); A) N Mi(A,9)
Sk(Av'w; A) = Sk(A7 ¢) n Mk(Aa "p’A) .

Now we shall suppose that A is of the following form :

{(is) € SLy(Z) |c=0mod N, b=0mod M, aEdElmodt}

(1.1)

for positive integers N and M and a divisor ¢t of M - N. Let us take a finite

extension Ko/Q in Q, and let K be the topological closure of K; in ap.
We put

Mi(A; K) = Mi(A; Ko) ®k, K,
Mi(A,9; K) = Mi(A,9; Ko) Qk, K,
Sk(A;K) = Sk(A; Ko) ®k, K,
Sk(A,¥; K) = Sk(A, ¢; Ko) ®k, K.

These spaces depend only on K and are independent of the choice of the
dense subfield K. By using g-expansions, we may consider these spaces
inside the formal power series ring K [[¢'/M]] (if A is of the form (1.1)). For
each j > 0, put

M (A K) = éMk(A;K), S/ (A K) = EJBSk(A;K) :
k=0 k=1

One may take these sums inside K[[¢'/™]], and we shall take inductive
limits inside K[[g*/M]] :

M(AK) = M™(AK) = g MY (A K) = éMk(A;K) :
j

k=0

S(A; K) =S°°(A;K)=1i_m)Sj(A;K):éSk(A;K).

J k=1

We shall define a p-adic norm on these spaces by

|flp = supla(n, )lp i £ = a(n, g™/ .

n=0
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Let M(A;K) (resp. S(A;K)) be the completion of M(A;K) (resp.
S(A; K)) under this norm inside K[[g"/™]]. They are K-Banack spaces.
Let Oy be the p-adic integer ring of K and put

Mi(4;0k) = My(A; K) N Ok[lg™]],

Sk(A; Ok) = Sk(A; K) 0 Ok|lg"/™]],
MI(A;0k) = MI(A; K) N Okl ™]],
S9(A;0k) = SJ’(A-K) N Ok([g*’™]) for j =1,2,---,00
M(A;0k) = M(A; K) 0 Ok [lg™]],
5(4;0k) = 5(A; K) N Ok|lg/™]] .

)

The space S(A;Ok) (resp. M(A;Ok)) is the completion of
S*(A;Ok) (resp. M®(A;Ok)) under the norm | |,. Let M and N be
positive integers prime to p, and put

To(Np", M) = {(“3) € SLy(Z) | b=0mod M, ¢ =0 mod Np" }
Ii(Np™, M) = {(Zs) €ETo(Np",M)|a=d=1 mod MNpT}

To(Np") =To(Np", 1), (Np") =T1(Np",1) and

1‘<N>={('§3) eI‘o(N,N)laEdslmodN} .

It is known by Katz that as subspaces of Ok[[g*/M]]
(1.2) S(ANT1(p"); Ok) = S(A; Ok),
M(ANT(p); Ok) = M(A : Ok)

for A =T1(N),I'1(N,M) and I'(N). Proof of (1.2) may be found in [13,
(1.9b) and Cor 1. 2] for I'; (V) and in [20, 5.6.3] for I'(V). The operator

[M] : Z aon — Z a,q" induces an isomorphism : S(T'; (N, M); Ok) ~

n=0 n=0
S(I' (MN); Ok) (resp. M(T1(N,M);Ok) =~ Ji(Fl(MN);OK)_); hence,
(1.2) is true for A = I'; (N, M). We shall write M(N;Ok) and S(N,Ok)
for M(T1(N); Ok) and S(I'1(N) : Og). We put, for AC Cor A = K, Ok,

Sp(Np™;A) = li_m,Sk(Fl(Npr); A),

M (Np>; A) = lim My (' (Np"); 4) .

r
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By (1.2), we have natural inclusions

(13)  Sk(Np™®;0k) C S(N; Ok), Mr(Np™;0k) C M(N;0k) .
We shall now introduce several operations on M(N;Ok) :

I. The action of Zy :
Put Z, = |im(Z/Np"Z)* = Z x (Z/NZ)*. For each element

z € Zn, we shall write z, (resp. z) for its projection in Z; (resp.
(Z/NZ)*). We let z € Zy act on My(T1(Np"); K) and Mi(T(N) N
T1(p");K) by f — flz = 2kflko,, where 0, € SL,(Z) is a matrix
with o, = (ZO z) mod Np". We let z act on M(A;K) as follows : for
f= ka with fy € My (4A;K), flz = Zz fr|ko .. This action preserves

M(A,(’)K) extends to M(A;Ok) and S(A Ok) for A =T1(N) or I'(N)
by continuity and induces the original action on M (T;(Np"); Ok) and
Sk(T1(Np"); Ok) under the inclusion (1.3) (this fact is due to Katz; see
[20, 5.3] and [13, § 3]). Via the natural projection : Z — (Z/Np"Z), any
integer n prime to Np can be considered as an element of Zy.

I1. The action of Hecke operators T'(n) :

We shall define, for each positive integer n, the Hecke operator T'(n)
by its effect on g-expansion coefficients :

(14a) a(m,fIT(n))= Y € 'a(mn/E, fl¢) for f € M(N;Ok) ,
0<tim,f|n
(eva):]-
where f|€ is the image of f under the action of the integer £ as an element
of Zn. We can easily deduce from (1.4a)

(1.4b) fI(T(£)? = T(€%)) = £7(f|¢) for each prime £ fNp.

By definition, T(n) induces the wusual Hecke operator on
M (T1(Np™); K) for each k¥ and r > 1 and preserves M(I';(Np");
Ok), since the action of Zy respects Ok-integral forms. Then by continu-
ity, T(n) extends automatically on M(N;Of). Of course, T(n) respects
S(N;0Ok) and S/(I'1(Np");Ok) forr=1,...,00and j =1,...,00.
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III. The operator [t] for0 <t € Q% :

-1
If A is of type (1.1), A" = ((t) 2) A(6 2) N SLy(Z) is again of
type (1.1) for each pair of positive integers ¢ and s. Define for each
o]

f € M(;0x) with £ =Y a(n, f) g

n=0
flie/sl =3 aln, £) q3is .
n=0

Obviously this operation preserves O -integral forms and induces a linear

map of Mg(A; K) into My (A’; K) for each k. Thus by continuity, we have
an Ok-linear map :

[t/s] : M(A; Ok) = M(A";0k) .
This map [t/s] is obviously injective.
IV. The action of SLy(Z/LZ) :

Let M and N be positive integers prime to p, and put L = MN.

We shall fix a primitive L-th root of unity {7, and suppose that {; € K.

Then it is known that the action : f — f|gy with v € SLy(Z) leaves

M (T(L); K) stable and factors through SL2(Z/LZ). We let SL2(Z/LZ)

act on M(T'(L); K) and S(I'(L); K) diagonally; namely, for f = ka
k

with fr € Mp(T(L);K), fly = kalk'y. This action preserves Og-
k

integral forms [13, § 1] and extends to an action on M(I'(L); Ok) and
S(T'(L); Ok) by continuity. This action is given on M (T (Np"; M); K)
under the embedding (1.2) as follows : For each 7 € SLy(Z/LZ), we choose
v € SLs(Z) such that v = ¥ mod L and v = 1 mod p". Then we have
F17 = fle for £ € My(T1(N973 M); K).

V. Trace morphisms :

Let M, N and L as above, and let ¢ : (Z/NpZ)* — Of be a
character. Since Z =T x (Z/LpZ)* and L = M N, we may consider ¥ as
a character of (Z/LpZ)* or Zr. Let A denote either of T'y(N), T'(N) or
T';(N, M). Since Zy, acts naturally on M(A; Ok), the subgroup (Z/LpZ)*
acts on M(A;Ok). Put

M(8;0x) ) = {f € M(A;0k)|fIC = ¥(Q)f for ¢ € (Z2/LpZ)* C Z1},
S(A: Ok)[¥] = M(8;0k) 1 N S(A; Ok) -
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Let w be the Teichmiiller character defined on Z by w(z) = lim z?" and
n—00

let € : T' — O be a finite order character of I = 1 + pZ, of conductor p"
for r > 1; that is, Ker(e) = 1 + p"Z,,. For ((é Z) € To(Np") and each
character a : (Z/Np'Z)* — O, write

a(‘z 3) =a(d) .

Then a gives a character of I'y(Np") and T'y(Np", M). For each s >, let A
be either of To(Np®) or To(Np®, M). Note that if f € My (A, epw™F;Ok),
then for { € (Z/LpZ)* C Zg,

fI¢ = Guw™ (O f =¥()f
since w({) = (, and €(¢{) = 1 as characters of Z. This shows

(15) MyTo(Np), b5 Ox)) € F(N; Ox0),
Mk(FO(NpsaM)ae'l/)w_k;oK) C H(PI(N7 M);OK)WJ] .

Let R be a representative set for I'o(Np", M) \ To(Np"); thus,

To(Np") = [ [ To(Np", M)y .
YER

We may suppose that v = 1 mod p" for all v € R. Write simply a for
evw™*. Then we see that a(y) = ¥(y) = ¥ (7) for v € R, where 1, is the
restriction of ¥ to (Z/LZ)*. We shall define a trace map

Try/n : Mi(To(ND"™, M), a; Og) = My (To(Np"),a; Ok)

by f|TeLn = Y ¥z (1) flk7-
vER
Recall that z, (resp. zo) is the projection of z € Z in ZJ (resp.
(Z/LZ)*). Then the action of 2y € (Z/LZ)* on M(T'(L); Ok) coincides
-1
with that of (z‘(’) 2 ) € SL(Z/LZ) by definition. For any A C SLy(Z),
0
we denote by A the image of A in SLy(Z/LZ). Note that for every
r, T)(Np",M) = T1(N,M) and To(Np", M) = Ty(N,M). If we write
T for the image of ¥ € R in SLy(Z/LZ), we see that R = {J|y € R} gives
a complete representative set for To(N, M) \ To(IV).
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LEMmMA 1.1. — Put

m(Ty(Np, M), ¥; K) = @ Mi(To(Np, M), yw™*; K)
k=0
and

m(T1(Np, M), 9; Ok) = m(T1(Np, M), 9; K) N Ok[[g"M]].

Letm(I'y(Np, M),; Ok) be the completion in O |[[q*/M]] of m(T'y(Np, M),
¥%;Ok) for the norm | |,. Then we have that m(I'1(Np, M),vy;0k) =
M(T'1(N, M), Ok)[¢] in Ok [lg*/™]].
Proof. — Put A =T'1(N,M)NTo(p) and p = {¢ € Z|¢P~' =1}
Then, we can decompose, according to the action of p, for A = Ok
and K,

M(Ty(Np, MY; A) = @) M(Ty(Np, M); A)lw]
a=0
p—2

M(Ty(Np, M); A) = @ M(Ty(Np, M); A)w?]

a=0
where on the subspace indicated by [w®], p acts via the character w®. Note

that M(T1(Np, M); K)w?] = @ Mi(A,w* % K) and
k=0

M(T1(Np, M); O)[w®] = M(T1(Np, M); K)w®] N Ok[lg"/™]] .

Let 1, be the restriction of ¢ to (Z/pZ)*. Then 9, = w* for a suitable a.
This shows that M(T;(Np, M); Ok)[%,] is dense in M(T'1(Np, M); Ok)
[¥p]. We may define a trace map

Tr : M(T1(Np, M); K)[9,] — M(T(L), K)
by fiITr= " > (M-

YEA\To(N,M)
This map sends M(T;(Np, M); A)[¢,] into M(T'1(N, M); A)[¢] for
A = Ok and K and is uniformely continuous. On the other hand, Tr
includes the trace map, defined before the lemma, of My(A,w? *; K)
onto My(To(Np, M),yw*; K) for each k and hence induces a map of
M(T'1(Np, M); K)[3p)] into m(I'y(Np, M), 9; K). By continuity, we have a
map

Tr : M(T1(Np, M); K)[p,] = m(T1(Np, M), %; K) .
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On m((I'(Np,M),y;K), Tr is merely the multiplication by
[To(Np, M) : A] and hence is surjective. If one considers Tr as a map of
M(A; K)[,] into M(T(L); K), it is surjective onto M(T;(N, M); K)[¢)]
by the same argument. This shows that

(L1 (Np, M), %; K) = M(T1(N, M); K)[)]

and therefore, m(I'y (Np, M), v; Ox) = M(T1(N, M) : Og)[4)].
By this lemma, we can define

Try/n : M(T1(N, M); Ok)[¥] = M(N; Ok) W]

by fITrrn = Z (7)1 f|y, where R is a complete representative set
7€R

for To(N, M) \To(N) in SLy(Z/LZ). We have a commutative diagram for

each pair (k,¢)

(1.6)Trr/w : M(T1(N, M), Ok)[¢¥] - M(N; Ok) Y]
J J
TrL/N : Mk(PO(NpTa M)a 5¢w_l; OK) - Mk(FO(Npr)r €¢w—k; Ok) ,
where the vertical arrows indicate the embeddings of (1.5).

VI. The twisted trace operator Tpn :

Let L be a positive integer prime to p and N be a divisor of L. Note

-1
that (](;f I(J)) I (L) (]gr 1?) =TI'1(N,L/N) and we know from III that the
map [VN/L] sends M(L; Ok)[¥] into M(T1(N, L/N);
Ok)[¢) for each character ¥ : (Z/NpZ)* — Of. We shall define
the operator Ty : M(L;Ok)[¢] — M(N;0k)[4] as the composi-
tion of [N/L] : M(L; Ok)[] = M(T1(N,L/N); Ox)[] and of Tryy :
M(T1(N,L/N); Og)[] = M(N;Ok)[4]. When we denote by R a com-
plete representative set for I'o(Np",L/N) \ T'o(Np"), we have a disjoint
decomposition

~f1 0 N ~(1 0
ro(2e) (§ G ) TolVe) = 1 ruczs) (6 3m)7
From this combined with (1.6), we have a commutative diagram for each
" pair (k,€):

(1.7) Tpn: \—IM—(L; Ok)[] - M(N; Ox)]

J
Mi(To(Lp"),edw™*;0k) — Mi(To(Np"), ey 0k) ,
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where the operator of the lower line is defined by

k
@i S A (g G )

7ER

VII. The twisting operator for each Dirichlet character  :

Let NV and M be positive integers prime to pand let x : (Z/Mp"Z)* —
Ok be a character. For each f € My(T1(N); K), put

(1.8) fix =Y x(n)a(n, g™,
n=0

where we put x(n) = 0 if (n,Mp") > 1. Then it is well known that
flx € Mi(T1(NM?%p?7); K) and this induces an operator

X : M(N;0k) = M(NM?;0k)
given by the formula (1.8).

VIIL. Differentiation :
It is known that the differential operator d = qdil& : Okllgl] —

Ok[[q]] preserves the spaces M(N;Ok) (in fact, it takes M(N;Ok) into.
S(N;Ok); cf. Cor. 2.3 in the text). We note the following relations :

(1.9) xod=dox,ndoT(n)=T(n)od,do[t] =t[t]od
(for0 <t € Z) and Z;‘:do[z]z [2]od for z € ZN.

Let V be a subspace of M(N;Ok) (of finite rank over Og) sta-
ble under the Hecke operators in II. We shall define the Hecke algebra
h(V) of V by the Og-subalgebra of the Og-linear endomorphism alge-
bra of V generated by T'(n) for all n > 0. We write hi(A,v;Ok) for
h(Sk(A,1;Ok)) for A with T;(N) D A D T3 (Np")) and hi (1 (Np"); Ok)
for h(S7(I'y(Np"); Ok)). The restriction of operators in h*(I'y(Np"); Ok)
to the subspace S7(I';(Np"); Ok) of S*(I'1(Np"); Ok) for each pair ¢ >
j gives a surjective Ok-algebra homomorphism : hi(I'y(Np");Ok) —
h/(T1(Np"); Ok). Define

h(N; Ok) = Jim /(T (Np); Ok) -
J
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Naturally h(N; Ok) acts on S*®°(I'1(Np); Ok), and by the uniform con-
tinuity, its action extends to ?(N ; Ok). The restriction of operators in
h(N; Ok) to the subspace V C S(N;Ox) gives a surjective Ox-algebra
homomorphism

pv : h(N;O0k) = h(V) .

Especially, by (1.2), hW/(T1(Np");0k), hi(T1(Np");0k) and
hi(To(Np™),evw™*; Ok) are residue algebras of h(V; Ok ). By (1.4b), each
element of Zy induces an endomorphism of S(N : Ok) which belongs to
h(N; Ok); thus, we have a continuous character : Zy — h(N; Ok), which
induces an Ok-algebra homomorphism of the continuous group algebra
OkllZN]] = EOK[(Z/NpTZ)X] into h(N;Ok). Let Ax = Ok][[T]] de-

note the conti;mous group algebra of I' = 1 + pZ,. Then the canonical
decomposition Zy ~ T x (Z/NpZ)* induces an algebra isomorphism :
Ok[[Zn]] = Ak ®ox Ok[(Z/NpZ)*] .

In particular, h(N; Ok) is a Ax-algebra.
We shall now define a pairing

(1.10) <, >h(V)xV = Ok by <h,f>=a(l,flh).

In particular, we include the case V = S(N; Ok), and in this case, we just
put h(V) = h(N; Ok).

PROPOSITION 1.2. — Let V be a subspace of S(N; Ok), and suppose
that :

(i) V is free of finite rank over Ok;
(i) V(K)NOkllg]l =V for V(K) =V Qo, K C L{[q]};
(iii) V is stable under T'(n) for all n > 0.

Then the pairing (1.10) is perfect; namely, it induces isomorphisms :
h(V) = Homo, (V,0k) and V = HomoK(h(V), Ok).

Proof. — We shall firstly show the non-degeneracy of the pairing on
h(V;K) and V(K) for h(V;K) = h(V) ®0, K. By (1.4a), we have a
formula : a(m, f) =< T(m),f > forall m > 0. If < h,f >= 0 for all
h € h(V;K), then a(m, f) = 0 for all m > 0 and f = 0. Conversely, if
< h,f >=0for all f € V(K), then 0 =< h, f|T(m) >= a(1, f|T(m)h) =
a(1, flhT(m)) =< T(m), flh >= a(m, f|h) for all m > 0. This shows that
flh =0 for all f € V(K) and thus h = 0 as operator on V(K). We shall
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next show that V ~ Home, (h(V'), Ok), which is sufficient for the assertion
since Ok is a discrete valuation ring. By the non-degeneracy already
proven, the induced map by the pairing from V' to Home, (h(V);Ok)
is injective; so, we shall prove the surjectivity. For each linear form
¢ : h(V) — Ok, we can find f € V(K) so that ¢(h) =< h,f > for all
h € h(V). Note that for all m > 0, a(m, f) =< T(m), f >= ¢(T(m)) € Ok
and thus f € V(K) N Ok]|[g]] = V. This finishes the proof.

THEOREM 1.3 — The pairing (1.10) induces isomorphisms : h(N; Ok)
=~ Homg, (S(N : Ok),Ok) and §(N, Ok) & Homp, (h(N; Ok), Ok).
Proof. — By Prop. 1.2, the pairing induces :
Homo, (87 (T'1(Np); Ok), Ok) = b?(T'1(Np); Ox).

We then know that
h(N; Ok) = limHomo, (5% (I'1(Np); Ok), Ok)
J
= Home, (msj(rl(NP); Ok),Ok)
3

= Homp, (S®(T1(Np); Ok), Ok)

=~ Homo, (S(T'1(Np); Ok), Ok).
([, 11.6.6, Prop, 11]).

The last equality follows from the uniform continuity of every linear form
on S®(T'1(Np); Ok) (with values in Ok). On the other hand, by Prop. 1.2
the pairing induces : for every m > 0,

(1.11)

Homo, (h(N;Ok),Ok [p™Ok) = S (T1(Np); Ok) ®ox Ok [p"Ok-
In fact, by Prop. 1.2, we know that
Homo, (b?(T'1(Np); Ok), Ok /p™Ok)
= §9(I'1(Np); Ok) ®ox Ok /pP"Ok.
Note that
Homo, (b’ (T'1(Np); Ok), Ok [p™Ok)
= Homo, /pm 0, (W (C1(ND); Ok /9™ Ok), Ok [p™ Ok).

The above module is nothing but the Pontryagin dual module of h?(T'; (Np);
Ok /p™Ok). Then the perfectness of the Pontryagin duality shows that
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lim Homp, /pmo, (b (T1(Np); Ok /p™Ok), Ok [p™Ok)
J

& Homo, /pm 0, (im b’ (T'y(Np); Ok /p™Ok), Ok [p™ Ok)

J

& Homo, (b(N;Ok), Ok /p™Ok).
This shows (1.11). By definition, we know that
S(N; 0k) = Jim(S*(T'1(Np); Ox) ®0x Ok /p™Ok)

2 Jlim Homo, (h(N; Ok), Ok /p" Ok)
= Homo, (h(N; Ok),lim Ok /p™Ok) ([1, 11.6.3, Prop. 5])

= Homo, (h(N; Ok), Ok).

This shows the assertion.

2. The projection to the ordinary part.

We shall begin with the definition of the projection to the ordinary
part, which is an idempotent e in h(N; Ok). Since h?(T'; (Np); Ok) is free
of finite rank over Ok for each j > 0, it is a product of local rings; so we
write

B/(Ty(Np);Ok) = [[ R
R

for local rings R. Let m(R) be the unique maximal ideal of R. We say that
R is ordinary if T'(p) ¢ m(R) (i.e. the projection of T'(p) in R is a unit
in R). Let h(T';(Np); Ok)° be the product of all ordinary local factors
of hi(T';(Np); Ok). We denote by e; the idempotent in h?(I',(Np); Ok)
corresponding to h?(I'y(Np); Ok)°. By definition, h?(T';(Np); Ok)° is the
biggest factor of h7(I'y (Np); Ok) on which the image of T'(p) is a unit, and
thus the natural projection of h*(T';(Np); Ok) onto h?(T'1(Np); Ok) for
each pair 7 > j sends e; to e;. Put

e=li_m_ej Eh(]\rv(,)l() )
J

which is an idempotent characterized by the fact that eT'(p) is a unit
in eh(N;0k) and (1 — e)T(p) is topologically nilpotent. Let us write
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h°(N;Ok) for eh(N; Ok), which is a Ak-algebra as well as an Ok[[Zn]]-
algebra, and also write S° (N; Ok ) for €S(N; Ok ). Similarly, we shall define
the ordinary parts h{(I';(Np"); Ok) and h{(A,¢;Ok) for A such that
T1(N)NTo(p) D A D T1(INp") by the biggest direct factor of the original
Hecke algebra on which the image of T'(p) is a unit.

If v is an element of 1 + pZ,, we denote by () its image in the
group I' embedded tautologically in Ax. We choose and fix a topological

generator u of 1 + pZ,. We shall simply write “u” for the corresponding
p-adic number. Put

wir=uw? ) —ub? T € Ag for0<keZ.

Then the correspondence : t(u) +— u*i(u) gives an isomorphism of Q-
algebra : Ak /wg rAx = Og[T/T,], where T, = P =1 + p"Z,. For each
finite order character ¢ : I' — O% of conductor p” and for each integer k, put
Pye = t(u) — u*e(u) € Ak. Then the assignment : ¢(u) — u*e(u) induces
an isomorphism : Ag /P Ak = Og. We define a congruence subgroup for

each0 <r € Z by &, =To(p")NTI'1(Np). Then if we put € (‘; g) = e(d)

for (¢ b € ®,,c : & — OF gives a character. The following fact is
c d K

proven in [13, § 3] and [14, § 1] :

THEOREM 2.1. — Suppose that p > 5. Then h°(N;Ok) is free
of finite rank over Ak, and the natural morphisms of h(N;Ok) onto
hy(T1(Np"); Ok) and onto hi(®,,e; Ok) induce isomorphisms for each
k>2,e:T>0kandr>1:

h°(N; Ok)/wi +h°(N; Ok) = hi(T1(Np"); Ok),
h°(N; OK)/Pk’eho(N; Ok) = hz(@r,E; OK)

which take T'(n) of h(N;Ok) to T(n) of the right-hand side.

We shall now discuss about the p-adic cuspidal condition. Let U =
{+ ((1) ’1‘) | w € Z/NZ} and S = U \ SLy(Z/NZ)/U. By the map :
SLy(Z/NZ) > v +— ~(o0), we can identify S with the set of all cusps of
X;(N). Fix a primitive root of unity {y € Q and suppose that {(y € K.
As seen in § 1.1V, SLy(Z/NZ) naturally acts on M(I'(N);Ok). It is
known that M(N;0k) = M(T(N); Og)V = H°(U, M(T(N); Ok)) (eg.
[13, § 1]). Thus for any v € SLy(Z/NZ), the number a(0, f|y) for each
f € M(N;0Ok) only depends on the double coset UU. Thus for each
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(s,2) € S x Z), we may define

6(f)(s,2) = a(0, flz7),

where z € Z; acts on f as an element of Zy (§ 1.I) and s = UU with
v € SLy(Z/NZ). Note that the action of z € Z and v € SLy(Z/NZ)
commutes each other, because z has no component on (Z/NZ)*. Since
the action of Z; is continuous under the norm | |,, the function 6(f) :
S x Z; — Ok is also continuous. Let C(S x Z;;0k) be the p-adic
Banach space of all continuous function on S x Z; with the uniform norm
I 6 ll= Suplg(s, 2)l,. We let Z act on C(S x Z}; Ox) by (¢lz)(s,2) =
8,2

¢(s,2z). Then, we have a continuous morphism of Ok[[Z;]]-modules
§: M(N;0k) — C(S x Z; Ok). Consider the tower of modular curves :
— X1(Np") = X3(Np™!) - --- = X (N). Then the set of all unramified
cusps over S forms a homogeneous space under the action of ZX(C Zn);
namely, we have a natural isomorphism :

{unramified cusps of X;(Np")} = (Z/p"Z)* x S.

Roughly speaking, the set of all cusps on the irreducible component of the
reduction of X;(Np") mod p corresponding to the valuation : f — |f|, of
the modular function field Q(X;(INp")) is exactly the image of the set of
unramified cusps on X;(Np"). Thus the above map § is nothing but the
evaluation of p-adic modular forms at these cusps, and naturally, we have
the following result :

THEOREM 2.2. — Suppose that {; € K. Then, we have a natural
exact sequence of Ok[[Z)]]-modules :

0 — S(N;0k) = M(N;0k) — C(S x ZX;0k) — 0.

Moreover, the action of e on C(S x Z;; Ok) induced by the above exact
sequence is the identity action; namely, we have that

M(N;0k)|(1 —e) C S(N; Ok).

Proof. — Since M(N;O0k) = M(N;Z,[(n]) ®z,cv) Ok and C(S x
Z);0k) = C(S x Z;;Zy[(N]) ®z,[¢cv) Ok, We may suppose that Ok =
Z,[(n]. Let F = Ok /pOk, which is a finite field and Ok is isomorphic to
the ring of Witt vectors W of F. Thus, we write W for Og. We also write
for any torsion W-module A

M(T(N), 4) = FAT(NY; W) @w 4, S(N; 4) = S(N; W) @w A
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and M(N;A) = M(N;W)®w A. Put §' = SLy(Z/NZ)/U, and define, in
exactly the same manner as §, the map

& : M(T(N); W) — C(S' x ZY;W).

We let SLy(Z/NZ) acts on C(S' x Z; W) by |7)(s, 2) = ¢(7s, z). Then
&' i equivariant under SL2(Z/NZ). Note that

METWN); W)Y = M(N;W),C(S' x ZX; W)Y = C(S x ZX; W).

As the order of U is prime to p, we have H!(U, Ker(é')) = 0, and therefore
the surjectivity of é follows from that of §'. We have that

M(D(N); W) = lim M(T(N); Wy),

where W, = W/p'W and M(T'(N); W,) = M(T(N); W) ®w W,.. Similarly,
C(S' x Z;;W) =Jim C(S" x Z,; W,). If the induced map

by : M(T(N),W,) — C(§' x Z;;W;)

is surjective for every r, then the image of §' is dense and compact, and
hence &' is surjective (as a Banach space under the norm | |,,, M(T(N), W)
is compact). The surjectivity of 4, follows from that of §; by Nakayama’s
lemma. (The finiteness assumption over W, is not necessary for applying
Nakayama’s lemma, since the maximal ideal of W, is nilpotent [2, II.3.2]).
Write

Vijpn = M(L(N),F)'» for Ty, = 1+ p"Z,.
Note that we have natural isomorphisms :

C(S'xZ;F)=C(S'"xZ,;W)®w F
and ¢(S' x ZX;F)'» = C(S' x (Z/p"Z)*;F).

Thus 6] induces 8] ,, : V1,n — C(S' x (Z/p"Z)*; F). Since C(§' x Z;F) =
lim C(S' x (Z/p"Z)*;F) and M(I'(N); F) = limV; », the surjectivity of

6? follows from that of §; ,, for each n. We are I;Low reduced to prove that
810 Vi = C(8' x (Z/p"Z)*;F) is surjective. For a while, we suppose
that N > 3. Then the ring Vi , for n > 1 coincides with that defined by
Katz in [19, 1.4] under the same symbol. Put R = V; o = M(T(N),F)%
and S; = Spec(R), Ti,» = Spec(Vi,n). Then R is a Dedekind domain
and T, is a Galois (étale) covering of S; with group (Z/p"Z)*. The
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evaluation : R 3 f + a(0, fly) for each s = U gives distinct F-valued
points of S; for each s € S’. We identify S’ with the set of these points.
By [19, (1.2.1)], each point of S’ is decomposed completely in T} ,, and the
set of all points of T}, over each s € S’ is isomorphic to (Z/p"Z)*, and
the Galois group Gal(Ty,,/S1) = (Z/p™Z)* acts on this set via the natural
permutation [19, (1.2.3)]. Therefore, the set of points of T}, over S’ is
isomorphic to S’ x (Z/p"Z)*. By the g-expansion principle, ¢*/" gives the
local parameter of each point of T3, over S'. Thus the map 6] , : Vi —
C(S' x (Z/p"Z)*;F) coincides with the evaluation of functions in V; , at
the points of T, over S'. Since T}, is étale irreducible over S;, Vi is a
Dedekind domain. Thus the approximation theorem of Dedekind domains
([2, VII.2.4]) affirms the surjectivity of 6; ,,. This shows the surjectivity
of § when N > 3. Even when N = 1 or 2, under the assumption that
p > 5, we can recover the surjectivity of §; ,, by the technique as in [19, §
4] (see also a remark in [13] after Th. 1.1 there). Thus hereafter, we shall
not suppose that N > 3 and prove the triviality of the action of e on
C(S x Z5;W). If p™ =1 mod N, then T(p™) commutes with the action
of SLy(Z/NZ) on M(N;W). In fact, it is known (cf. [27, chap. 3]) that

A (§ )T = LT TaVB)buw, where S € Ma(2)

u mod p™

is such that det(B,n) = p™ and Bun = (1 ulV

0 pm ) mod Np™. For any

v € To(p™),7Bun7" satisfies the same condition as above, and thus,
T(p™) commutes with ¥ € SLa(Z/NZ) on My (T'1(Np); K) for all k. This
shows the commutativity on M(N;W). Thus, for any v € SLy(Z/NZ),

a(n, fIT (™)) = a(n, fIyT(®™)) = a(np™, f17) ;

especially, a(0, fIT(p™)y) = (0, f|y). Thus e acts on C'(S_f_ Z,W)
trivially. Now we shall show the exactitude of the sequence at M(N; W).
From the triviality of the action of e on C(S x Z;; W), we conclude that
(i) the sequence :

0 — Ker(6)|e S M(N; W)|eSC(S x Z3;W) = 0

is exact, and (i) Ker(§)|(1 — e) = M(N;W)|(1 — e). By our argu-

ment which proves the surjectivity of §, the following sequence is also

exact : 0 — ((Ker(6)le) ®w F)F S(M(N;F)|e)’SC(S;F) — 0. Note
p+1

that (M(N;F)le)’ = @D(Mi(T:(N);F)le) ([13, Th. 4.2]), where
k=3
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Mp(T1(N);F) = Mp(T1(N); W) @w F Thus, if f € (M(N; F‘)]e)r i

in the kernel of 8, f is an element of @Sk(Fl(N),F) and hence is a
k=

cusp form. Thus ((Ker(8)|e) ®w F)T C (S(N ; F)|e)T. The other inclusion

(S(N;F)le)' C ((Ker(6)|e) ®w F)T is obvious and thus

(*) (S(V; F)le)" = ((Ker(6)le) @w F)".

Let X be the Pontryagin dual module of (Ker(6)|e) ®w K/W, and write
r for dimp(S(NV;F)le)T. Since S(N; K/W)le — (Ker(6)|e) ®w K/W, we
have a natural surjection : X — h°(N; W) by (13, Th. 2.2]. By (*), we have
a surjection : A, — X. Note that h°(N; W) is Ax-free of rank r. Thus
X ~ h°(N;W) and by duality we have

S(N; K/W)le = (Ker(6)|e) @w K/W.

This implies that §°(IV; W) = Ker(6)|e. Thus what we have to show is that
S(NpW)|1 - T(p™)) is demse in M(NpW)|1 — T(p™)).
Take f € M(Np;W)|(1 — T(p™)). Then for any v € Ty(p), a(0, fly) =0.
In fact, if s = y(c0) € P}(Q), then we can choose 7' € T'y(p™) such that
~'(00) and s are I'y(Np)-equivalent. Thus we may suppose that y € I'o(p™).
Then as already seen, g|y o T'(p™) = g|T'(p™) o v for any g € M(Np; W),
and therefore, we have that

a(0,g|v) = a(0,glvT(p™)) = a(0, 9T (p™)7)-

Thus, if f = g|(1 — T(p™)), then a(0, fly) = 0. To construct a series of
cusp forms convergent to f, we use an argument of Serre [26, § 3]. Let
r=p"(p—1) and put

E=1-2 i ( ) d”l) q" € M (SLx(Z); Z,)

B'r n=1 \0<d|n

and
G, =E, — p"E,|[p] € M.(To(p); Zy)-

1 0
To(p)- Note that Io(p) (1 _01) To(p) = SLa(Z) — T'o(p). Then we see
easily that lim G,.f = f and G,f € S(Np; W). This finishes the proof.
r—00

Then G, = 1 mod p"*! and a(0,G.|y) = 0 for all v € Ty(p) ( 1)
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For each positive integer M, we denote by 25, the identity Dirichlet
character modulo M ; thus

_ {1 i (M) =1,
’M(")‘{o ;f (Z,M)>1.

COROLLARY 2.3. — For any character x modulo p”, we have that
M(N;Ok)lx € S(N;Ok) and d(M(N;Ox)) C S(N;Ox) for d = qa‘%.
Especially, one has that

M(N; Okl € S(N; Ok).

Proof. — One sees easily from definition that eod = 0 (e.g. [11,
(6.12)]) and T'(p) o x = 0. This shows that result by Theorem 2.2.

ProPosITION 2.4. — Let x : (Z/p"Z)* — O} be a character. Then we
have that e(f(glx)) = x(—1)e(g(f|x)) and e(fdg) = —e(gdf) ford = qa‘iq-

Proof. — The second assertion follows from the fact that eod = 0
and d(fg) = fdg + gdf. For any n > 0, we see that

a(np”, f(glx) = D x(i)a(i, a(i,9)
i+j=np”

=x(-1) Y x(9)a(,fa(,g) (j=—imodp")

i+j=np"
= x(=1)a(np", g(f1x))-

Thus we know that

(£ (g1x)) — x(=D)(g(F1x)le = ((f(glx)) — x(=1)(9(FLDINIT(p") = 0.

3. A generalization of p-adic measure theory.

Let X be a product of a finite set and several copies of Z,,. We call this
type of topological space a p-adic space. Let C(X;Ok) be the (compact)
p-adic Banach space of all continuous functions : X — Ok with the norm :
| ¢ lI= Sup|¢(z)|p. Put

ze€X

Meas(X; Ok) = Homp, (C(X;Ok),Ok).
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We may define a norm on Meas(X; Ok) by

¢ ll= Sup le(d)l, (¢ € C(X;0k)).
lleli=1

Then Meas(.X; Ok ) becomes a compact p-adic Banach space, and C(X; Ok)
=~ Homp, (Meas(X;Ok),0Ok) naturally, if X is a p-adic group,
Meas(X; Ok) becomes a Banach algebra under the convolution product.
Let us fix a topological generator ¢(u) of I' with w in Z,, and identify A with
Ok|[X]] by the correspondence : 1(u) + 1+ X. Then, it is well known that if
i is an element of Meas(I'; Ok ), there exists an element F of Ax = Ok[[X]]

such that /:c"du = F(u® — 1) for all s € Z,. The map p +— F is an iso-
T
morphism of Banach spaces between Meas(I'; Ok ) and Ak (e.g. [21, Chap.

4]).

We identify X(Z; Ok) = Homo, —aig(Z, Ok ) with a subset of Spec(Z)
by P — Ker(P); so, P € X(Z;Ok) can be considered as an Ok-algebra
homomorphism as well as a prime ideal of Z. Then P € X(Ak;Ok)
is a prime ideal of height 1 and hence is principal, because Ax is a
unique factorization domain. Thus we can find a generator F' of P. By
the Weierstrass preparation theorem (e.g. [21, Chap. 5 Th. 2.2]), we can
find a distinguished polynomial #(X) € Ok[X] such that P = (®) = (F).
Since P is prime, ® must be irreducible and Ok [X]/(®) = Ok. Thus ® is
of the form : X — z with z € Ok and |z|, < 1.

Let X(Ak; Ok) be the set of all Ok-valued points of Spec(Ag). Then,
we have the isomorphism :

X(Ak;Ok) = {z € Ok||z|, < 1}.

Therefore, to give a measure on I" amounts to give an algebraic function on
X(Ak;Ok) induced by its structure sheaf Ax. Let Xa5(Ax; Ok) be the

subset of all points in X'(Ak;Ok) of the form Py . of weight k£ > 0 and of
finite order character € : T' — Ok.

Let Lk denote the quotient field of Ak, and let K be a finite extension
of L. Let Z be the integral closure of Ax in K. We say that an ideal P
of 7 is a prime divisor if P is a prime ideal of height 1. An ideal a of 7
is called a divisor if a is an intersection of nPe(P ) of finitely many prime

P ,

divisors. For the general theory of divisors, we refer to [2, Chap. 7).

Lemma 3.1. — Let M/K'is a finite extension and J be the integral
closure of T in M. Then J is I-reflexive; in particular, J is A g-free of finite
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rank. Moreover, if there is a prime divisor P of I such that Z/PT = Ok
and J[PJ is Ix-flat, then J is free of finite rank over Z.

Proof. — Put J = ﬂ Jp, where the intersection is taken in the field,

M, P runs over all primg divisors of Ax and Jp is the localization of J
at P. Then J is reflexive and finite over Z. Since J is integrally closed,
we know that J = J. Any reflexive Ax-module of finite type is free, since
A is regular of dimension 2. Let P be the prime divisor of Z as in the
last assertion. By assumption, J/PJ is flat over Ox = Z/PZ, and thus
we can find a basis ,...,T, of J/PJ over Ok. Let z,,...,2, € J be
elements such that z; mod PJ = Z;. By Nakayama’s lemma, we have a
surjective morphism of Z-modules ¢ : Z" — J given by (ay,...,a,) —
a171 + ... + a;z,.. From the first assertion, we know that J is free of the
same rank as Z” over Ag. Thus ¢ must be an isomorphism.

We shall suppose that _
(3.1a) the algebraic closure of Q, inside K coincides with K.
If (3.1a) is satisfied, we say that K is defined over K. We put

X(Z;0k) = Homox_alg(z, Ok)
Xag(Z; Ok) = {P € X(T; Ok)|P|a, € Xag(Ax;Ok)}.

For each P € Xu4(Z; Ok), we can write P|s, = Py for an integer £ > 0
and a finite order character ¢ : I' —» Ok. We write k = k(P) and € = ¢p,
and we define an integer 7(P) > 1 by Ker(ep) ='yp) =1+ p"P)Z,.

LemMA 3.2. — For a given integer n, the number of extensions of K
of degree n inside Q,, is finite.

The proof is easy and is left to the reader.

Write d(Z)(= d(K)) for the rank of Z over Ak. If we take the
composite M of all extensions of K of degree d(Z)! and if we write
J =TI ®0, O = T ®r, Aum, then any point P € X(Ak;0Ok) is an
image of at least one point of X(J;Op). Thus, by extending scalars, we
may assume that

(3.1b) Xag(Z; Ok) is Zariski dense (i.e. has infinitely many points) in the
space of Q,-valued points of Spec(Z).
Terminology. — Let Meas(X; Ok)®eo, Z be the profinite completion

of Meas(X; Ok) ®o, I. An element of Meas(X; Ok )®o, Z will be called
a generalized measure on X x X(Z; Ok).
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When I = Ak, the space Meas(X;Ok)®0, Ak can be naturally
identified with the measure space Meas(X X I'; Ok). We may define a p-
adic norm on Z by || ¢ ||=|| Ni/ck(®) |, where Nz, : T — Ak is the
norm map. Then 7 becomes an Ok-Banach algebra under this norm. As a
linear topological space, Z is isomorphic to A% for d = d(Z), and thus as a
linear topological space, Meas(X; Ok )®0, I = Meas(X x I'; Ok)4.

Let & be a generalized measure on X x X(Z; Ok). Let P € X(Z;Ok)

and Ap : Z — Ok be the corresponding Ok-algebra homomorphism. Then
we have an induced continuous morphism :

id ® Ap : Meas(X; Ok)®0, I — Meas(X; Ok)
(= Meas(X; Ok) ®oy Z/PI).

We shall write ®p € Meas(X; Ok) for the image of ® under id.®Ap.

LEmMMA 3.3. — Let X be a subset of X(Z;Ok), and suppose that X
is Zariski dense in the space of all _Q-p-valued points of Spec(Z). Then ® is
uniquely determined by its values ®p at P € X.

Proof. — For each ¢ € C(X;0k), ¢ : Meas(X;Og) — Ok defined
by ¢ — ¢(¢) (¢ € Meas(X;Ok)) gives a continuous linear form. Then
¢ ®id : Meas(X; Ok )®0,Z — T is a continuous morphism. Note that

Ap(¢ ®id(®)) = $ ® Ap(B) = /X $d%p.

Thus ¢ ® id(®) € T is determined by its values on X, since X is Zariski
dense. The lemma is obviously true when 7 = Ag. If we fix an isomor-
phism : T = A%, then it induces an isomorphism : Meas(X; Ok )®0, I =
Meas(X x I'; Ok ). We consider the commutative diagram :

¢®id: Meas(X;0k)®0, I —7I

Ui Ll
Meas(X xI;0k)? — A%.

In the lower line, it is obvious that if ¢ ® id(®) = ¢ ® id(®') for all
¢ € C(X;0k), then ® = ®’'. This shows the lemma.

We may extend our theory by replacing I by I®e, J, where J is
the integral closure of Ak in another extension M/Lg satisfying (3.1a,b).
In this case, Lemma 3.3 can be stated as follows :

Let X and X' be Zariski dense subsets of X(Z;Ok) and X(J : Ok)
respectively. Then & € Meas(X; Ok)®0, I®0, J is uniquely determined
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by its values ®p g at (P,Q) € X x X', where
q’p,Q =id®Ap® AQ(Q).

We leave the proof of this generalized version to the reader.

4. Modules of congruences.

In this section, we shall generalize the theory developed in [13, § 3]
and [14, § 1 and 10] for modules of congruences over Ax to those over an
arbitrary normal finite extension Z of Ax. Let K be a finite extension over
Ly and T be the integral closure of Ax in K. We shall suppose that K is
sufficiently large so that
(4.1a) K is defined over K ;

(4.1b)  Xag(Z; Ok) is Zariski dense in Spec(l’)(ap).

Let N be a positive integer prime to p, and we shall consider the ordinary
part h°(N; Ok) of the Hecke algebra defined in § 1 and 2. We shall consider
a base change over Ax to Z; namely, we shall deal with the Z-algebra :
h°(N; Ok)®a, Z, which is canonically isomorphic to h?(N; Z,)®,Z, where
A =Aq,.

Let A : h°(N;0k) Qrx T — I be an Z-algebra homomorphism.
The Ok[[Zn]]-algebra structure on h°(N; Ok) induces a homomorphism
of groups from the subgroup (Z/NpZ)* of Zy into the unit group of
h°(N; Ok). This combined with ) gives a character ¢ : (Z/NpZ)* — Ok,
which we shall call the character of A. It is known that ¥ is even, i.e.
¥(—1) =1 [14, Cor. 1.6]. By definition for each P € Xu4(Z; Ok ), we have
Z/PI = Ok. For P € Xy¢(Z;Ok), we consider the reduction of A mod P :

Ap 1 h°(N; Ok) ®, (Z/PT) - I/PI = Ok.

If the weight k(P) of P is greater than or equal to 2 and if the character
ep of P has conductor p"(P), we have by Th. 2.1,

h®(N; Ok) @1 (Z/PI) = hy(p)(®r(p),epP; Ok),
whence an Og-algebra homomorphism denoted by the same symbol :
Ap : hip)(®r(p),€p; Ok) — Ok.

By the duality theorem (Prop. 1.2), we can find a unique normalized
eigenform fp € Sk(p)(I‘o(Np"(P)),€p¢w"’°(P)) such that fp|T(n) =
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Ap(T'(n))fp for all n > 0. This form will be called the ordinary form
. belonging to A at P € X,4(Z;O0k). We say that K is a splitting field of
h°(N; Ok) if for any minimal prime ideal p of h°(N; Ok),h°(N;Ok)/p
can be embedded isomorphically into K as A k-algebras.

The following fact is known :

THEOREM 4.1. — Let A : h°(N;Ok) ®@a, T — I be an I-algebra
homomorphism. Then the following two statements are equivalent :

(i) there exists P € Xag(Z; Ok ) with k(P) > 2 such that fp is primitive
of conductor Np™(P);

(ii) fp is primitive for every P with k(P) > 2 such that the p-part of
epypw*P) is non-trivial.

Moreover, suppose that the above equivalent conditions are satisfied
by X, and let P € X,4(Z; Ok) be a point such that the p-part of e ptpw=*(P)
is trivial. Then either fp is primitive and k(P) = 2 or there exists a
primitive form f in Sk(p)(I‘o(N),d)w"‘(P)) such that |a(p, f)|, = 1 and
fp = f — af|[p], where a is the non-unit p-adic root of the equation :
X% — a(p, )X + (Yw=*P))o(p)p*P)~1 = 0 for the primitive character
(¥w*)o associated with pw—*. Conversely, suppose that K is a splitting field
of h°(N; Ok). Then if f € S(®r,€;Ok) is primitive or is associated with
a primitive form in Si(I'1(N); Ok) in the above manner, then f belongs to
a unique homomorphism : h°(N;Og) ®a, I — T satisfying (i) and (ii).

When )\ satisfies one of the equivalent conditions (i) and (ii), we say
that X is primitive.

Proof. — Since A induces a Ak-algebra homomorphism

A:h°(N;0k) =T

and we have, A : h°(N;Ok) ®a, Lk — K, we may suppose that K is a
surjective image of A. Then fp belongs to ) in the sense of [14, (1.11)] and
the theorem follows from [14, Cor. 1.3].

Suppose that X is primitive. For each P € Xag(Z; Ok ) with k(P) > 2,
we have by Th. 4.1 a K-algebra decomposition :

(42) h(®.(p),ep; K)=Kp® Ap,Kp = K

such that the first projection is induced by Ap. Let h(Kp) and h(Ap) be
the projections of hi(®,(p),ep; Ok) in Kp and Ap, respectively. We shall
define the module of congruences for fp (or Ap) by

C(fp) = C(Ap) = (b(Kp) ® h(Ap))/hi(2r(p),eP; OK)-
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The above proof of Th. 4.1 combined with [13, Cor. 3.3] and [14, Cor. 1.4]
shows

THEOREM 4.2. — Let A : h°(N,Ok) ®r, T — I be a primitive
homomorphism of I-algebras. Then )\ induces a decomposition of K-
algebras : ‘

h°(N;0g)@pz K=K A
such that the projection of h°(N; Ok) ®a, T into the first factor coincides
with A. Moreover, let h(K) and h(.A) be the images of h°(N; Ok)®a, T in

K and A, respectively. Then, the diagonal inclusion : h®(N;Ok) ®p, T —

h(K) @ h(A) induces an isomorphism for each P € X4(Z;0Ok) with
kp>2:

h°(N;Ok) ®x Ip = h(K)p @ h(A)p,

where the subscript “P” indicates the localization at P. In particular,
h(Kp) = h(K)/Ph(K) and Ap = h(A)p/Ph(A)p.

With the same notation and assumption as in the theorem, put

(4-3a) h(4) =\ b(A)p,
P

where the intersection is taken in .\A and where P runs over all prime divisors
of I,
(4.3b)  Co(N ) = (h(K) ® h(A))/(h°(N; Ok) ®ak 1),

C(\T) = (b(K) @ h(A))/(b°(N; Ok) ®a T),
(43c) No(A\T) = h(A)/h(A) = C(NT)/Co(X D).

Then we have the following result (for the definition of the pseudo-nullity,
see [2, VII}) :

THEOREM 4.3. — Let M be a finite extension of K and J be the
integral closure of T in M. Suppose A to be primitive, and let
A®id: h°(N;0k) @, J(=h°(N : Ok) @ I®1 T) = J.
Then we have the following assertions :
(4.4a) N,(X;T) is a pseudo-null Z-module;
(4.4b) Co(A®1id; J) = Co(MT) ®7 T 5.
(4.4c) Co(A;T) = I/a with a non-zero divisor a of I.
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Proof. — The assertion (4.4a,b) is obvious from the definition. For
simplicity, we shall write L = h°(N;Ok) ®a, I. For (4.4c), we have by
definition that L + h(K) = h(K) ® h(.A) and thus

Co(XT) = L +h(K)/L = h(K)/L N h(K).

Note that Z = h(K) canonically and a = LNh(K) = LN K is reflexive (cf.
[2, VIL.4 Prop. 6]). Thus a is a non-zero divisor.

THEOREM 4.4. — Let R be a local ring of h°(N; Ok) through which
A factors. Then the following two conditions are equivalent :
(4.5a) R = Hom,, (R, Ak) as R-modules;
(4.5b) R®A, Z = Homz(R ®a, Z,T) as R ®a, Z-modules.

Moreover, if we suppose one of the above equivalent conditions and that A
is primitive, then we have

(4.6a) Ns(X;T) =0 and Co(\;T) = C(\; T);
(4.6b) Co(N;T) = I/HT for a non-zero element H of T ;
(4.6c) For each P € X,g(Z; Ok) with k(P) > 2, we have
Co(M;T) @1 I/PI = C(fp) canonically.
Proof. — Note that as R ®j, Z-module,
Homz(R QA Z,7) = Homp , (R,Homz(Z,T)) = Homa . (R, I).
Since the Ag-module Z is free of finite rank, we see that
Hom,, (R,7) = Homy, (R,Ak) ®ax I.
Thus the implication (4.5a) = (4.5b) is obvious; so, we shall suppose (4.5b)
and show (4.5a). Since 7 is A-free, we have an isomorphism of R-modules

for d = d(7)

©0:R*®p, T = Homp, (R®s, I,T)
= Hom,, (R, Ak) ®Arx I = Homy (R, Ax)d.

We write this isomorphism matricially as (¢;;) with homomorphisms of
R-modules ¢;; : R — Homy, (R, Ak). Let m be the maximal ideal of R. If
¢ij(R) C mHomy, (R,Ak) for all ¢ and j, then

¢(R%) C m(Homy, (R,Ak)?).
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This contradicts to the surjectivity of ¢. Thus we can find at least one
pair (2,7) such that @;; is surjective. Since R is Ag-free of finite rank by
Th. 2.1, we conclude that ¢;; is an isomorphism by comparing the rank
of R and Homy . (R, Ak) over Ak; so, R = Homy , (R, Ak) as R-modules
and we have proven the implication (4.5b) = (4.5a). Now, assuming one
of (4.5a,b), we shall prove (4.6a). By Th. 4.2, X induces a decomposition of
K-algebras; R ®a, K = K @ B. Let R(K) and R(B) be the image of R in
K and B. Then, by definition, it is plain that

Co(XZ) = (R(K) ® R(B))/(R®ax I)
and C(XI) = (R(K) ® R(B))/(R ®n, T),
where R(B) = ﬂR(B) p (the intersection is taken over all prime divisors

P
P of T). We have an exact sequence of R ®,, Z-modules : 0 — Ker(A) —
R®a, T — R(K) — 0. Note that R(K) = Z. Thus this sequence is split
exact (non-canonically) as that of Z-modules and thus Ker(]) is Z-free. By
the duality, we have another exact sequence :

0 — Homz(R(K),T) — Homz(R ®a, Z,T) — Homz(Ker()), Z) — 0.

If we identify Homz(R ®a, Z,Z) with R @5, Z by (4.5b), we know that
R(B) = Homz(Ker()),ZI) (cf. the proof of [15, Lemma 1.6] or [13, Prop.
3.9)). Thus R(B) is Z-free and hence coincides with R(B). This shows (4.6a).
The assertion (4.6b) follows from [15, Lemma 1.6]. We shall prove (4.6c).
We have an exact sequence :

0— (RQ®ax I) = R(K) ® R(B) — Co(N;Z) — 0.

By Th. 4.2, we know that R Qx, Zp = R(K)p ® R(B)p for P €
Xaig(Z; Ok ) with k(P) > 2. Note that R ®a, Z/PT is a local factor of
hy(p)(®,(p),eP; Ok) and R ®r, Ip/PLp = (R ®, I/PI)®o, K is a
direct factor of hy(p)(®-(p),€p; K). This shows that the induced sequence :

R®a, I/PI S
(R(K)/PR(K)) ® (R(B)/ PR(B)) — Co(A;I) @1 I/P1 — 0

is exact and Ker() is finite. Since R ®a, Z/PZT is Ok-free, o must be
injective. The natural projections : R®a, Z — R(K) and R®4, Z — R(B)
induce the natural surjections : R ®, Z/PTI — (R(K)/PR(K)) and
R ®p, I/PT — (R(B)/PR(B)). Since a is the diagonal map of these
surjections, we know from the definition of C(fp) that

C(fp) = Coker(a) = Co();T) @7 I/PT canonically.
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This finishes the proof.

Here let us add a supplement to the result in [14, § 10]. We shall use
the same notation as in [14, § 10]. We have defined there a transcendental
factor Uy (k,e) € C* for the set ¥(k,e) = {fp such that k(P) = k and
ep = €}. We now define the transcendental factor for each fp. (When
d(Z) = 1, the set ¥(k, €) consists of a single element fp and we have nothing
to add to [14, § 10] but there are non-trivial examples with d(Z) > 1; cf.
[12, § 4]). Suppose A to be primitive. We shall decompose

(4.7 hy(®,,¢; K) = K & A as an algebra direct sum

according to Ap for P € AXy4(Z;0k), 7 = r(P), k = k(P) > 2 and
€ = ep. Let Ky be the subfield of Q generated by a(n, fp) for all n > 0.
Then hg(®,,¢; K) = hi(®,,¢; Ko) Qk, K and Ap induces a morphism of
Ky-algebras : hg(®,,¢; Ko) — Ko. Thus we can decompose

(4.8) hg(®r,¢;Ko) = Ko @ Ap and hg(®,,¢;C) = Cd (4o ®k, C).

Let C be the conductor of fp and put S(¢) = Si(®r,e) + Sk(®r,&)
as a subspace of the parabolic cohomology group HL(T'1(C), Ln(C))
(n = k — 2) (see [14, (10.4)]). Define S(fp) = 1k,(S(¢)) and S(4) =
14,(S(g)), where 1k, (resp. 1la,) is the idempotent of the component
Ky (resp. Ag) of the Hecke algebra (4.8). Let V be the discrete valua-
tion ring Ko N Ok, and write L for the image of Hp(I'1(C),Ln(V)) in
H)(T1(C), Ln(C)). Put

(4.9) L.,p = LN S(fp), Lp = m(L) N S(fp),

where 7, : Hp(I'1(C), Ln(C)) — S(€) be the projection as in [14, (10.6)].
Note that S(fp) = Lep ® C = L% ®y C = Cfp + C(f3)? for
(f2)°(2) = f3(—%), where f2 denotes the primitive form in Sx(I';(C))
associated with fp. Let 6;,62 (resp. 6,85) be a basis of L. p (resp. L%)
over V, and define X,Y € GLy(C) by the matricial identity :

(61,62)X = (£3,(F2)°), (81, 65)Y = (£2,(F2)°).

We define

(4.10) Uoo(Ap) = det(X?ﬁ and
Uso(Ap) = ™ ueo (Ap) /{(k — 1)!CC(epw™*)p(C/Clepw ™))},

where C(fp) = C (resp. C(ew™*)) is the conductor of fp (resp. epw™*)
and ¢ is the Euler function.
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THEOREM 4.5. — Suppose one of the equivalent conditions (4.5a,b)
and A to be primitive. Suppose also that the p-part of 1 is not equal to
w?. Let P € X,g(T) with k(P) > 2. Let D(s, f3) be the L-function of
[P defined in [14, (10.2)] and H € T be a generator of the annihilator of
Co(X\;T). Then we can find a p-adic unit Up(Ap) € Qp such that

(4.11) H(P) = D(k(P), f)/Uso(Ap)Up(Ap).

For the proof of this fact, see [16]. We will not need this result later in this
paper. Here are several remarks about the theorem :

Remark 4.6. — (i) Under the hypothesis of Theorem 4.5, it is known
(e.g. [10, Th. 5.1]) that

(412) D(k, fp)
= 247D (k) THE(C)CC (e ™)e(C/Cledpw™ )} < f2, f3 >1u(0)s

where ¢ is the Euler function, and 6(C) = 2 or 1 according as C > 2 or
not, and k = k(P). By this formula, we know that

D(k(P), f%)/(2mi)*¥(P) 1y (Ap) is algebraic.

(ii) The Gorenstein condition (4.5a,b) is known to hold in the follow-
ing cases, where the p-part of ¥ isw® with0<a<p-1:

A.a=2and N =1 (Mazur [22, Cor. 15.2 and 16.3 of Chap. II]);

B. Let w(\) be the Galois representation into GL2(K) attached to A
defined in [14, Th. 2.1.]. Let m (resp. p) be the maximal ideal of Z (resp.
Ok). We shall define the residual representation of m(A) mod m :

#()) : Gal(Q/Q) — GLy(I/m)

according to Mazur-Wiles (23, § 10] as follows : Choose P € Xag(Z; Ok)
with k(P) > 2. Then we have Deligne’s Galois representation w(fp) :
Gal(Q/Q) — GLy(Ok) attached to fp (e.g. [14, § 2]), and the residual
representation 7()\) is the semi-simplification of the composite of 7(fp)
with the reduction map : GLy(Okg) — GL2(Ok/p). Note that #())
depends only on 7()) and is independent of the choice of P € Xa15(Z; Ok)-
Then the Gorenstein condition (4.5a,b) is satisfied by A ifa # 1, a # 2 and
#(A) is irreducible. This is shown by Mazur-Wiles (23, § 10] when N =1
and is generalized to an arbitrary N by Tilouine [33).

C.a#1, a#2and ]\ is-with complex multiplication in the sense of
[14, Prop. 2.3]. This is a special case of Case B but a simple proof can be
found in [15, § 6].
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(iii) Let A be the restriction of A to h°(IV;Ok). We may assume
that 7 is the smallest, i.e. the integral closure of Ak in the quotient field
of the image of A\. If Z = Ag, then C(};7Z) coincides with the module
of congruences defined in [13, (3.9b)]. However, if d(Z) > 1, the module
C(X;Z) and that given in [13, (3.9b)] are generally different. We note here
only the existence of a surjective morphism of Cy(A;Z) onto the other. A
detailed study of relations among these modules can be found in [16]. Some
part of this has already been discussed in [12].

(iv) We briefly discuss here the relation between our transcendental
factor U (Ap) and that defined by Deligne in [6, § 7] in the language
of motives. Let g be a primitive form of weight £ and of character &.
Let M(\p) = M(f2) (resp. M(g)) denote the motive attached to the
primitive form f3 (resp. g) defined in [6, § 7]. Then M()p) is of rank 2
and has coefficient in the field E generated over Q by a(n, f3) for all n.
Let Ad(M(\p)) be the unique direct factor of rank 3 in M(Ap) @ M(Ap)”
which is the kernel of the natural morphism :

M(Ap)® M(Ap) — Z(0) ®z rg = rg(0),

where rg is the integer ring of E and M(Ap)” is the dual of M(Ap).
Then Ad(M(Ap)) can be realized in H}(Y,F,(E)) ® H(Y,F,(E)) for
the modular curve Y)q with Y(C) = I'y(C) \ 9, where F,(E) is the
locally constant sheaf defined in [16, § 2]. Thus, as the Deligne’s periods
ct(Ad(M(Ap)) = ¢~ (Ad(\p)), we may take [6, Prop. 7.7]

@13) 2P) = [ 55 ABBD = 20FH17* < 14, 3 > (k = k(P))

where Y’ =T(C) \ H and 6(f) = (2m3) f(z) (’1’ )n dz with (j)n dz with

n
z

1) = t(z",2"1,...,1) for n = k — 2 and O, is the matrix defined
in [27, (8.2.2)] giving the self duality of F,(E). Noting that the Deligne’s
periods ct and ¢ are defined only up to scalar factors in E*, we hereafter
write a'Eb (or simply, a ~ b) for a, b € C* if a = b in C*/E*. Then we
see from [31, Th. 1] or [6, Prop. 7.7]
(414) T (AdM(Ap)) ~ c™(Ad(M(Xp))

~ ¢t (M(Ap))e™ (M(Ap)) ~ (2mi) Q(P).
Similarly to [6, Prop. 7.7], one knows

(4.15) T (M(Ap) ® M(g))(£+m) ~ (2mi) 2™ 1Q(P)G(E) if k > L.
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" On the other hand, by extending scalar of M(Ap) to K; as in (4.8), we

know from the definition of u.,(Ap) (see also [6, 1.7], [10, Remark 6.4a,b])
that

(4.16) Uoo(AP) 2 (2mi) 2 Q(P)~c* (M(Ap))c™ (M(X)).

5. Arithmetic measures and the main results.

Let J be a positive integer prime to p. We shall begin with a definition
of a class of measures with values in M(J; Ok). Let X be a p-adic space
in the sense of § 3. A measure y on X with values in M(J;Ok) is an Ok-
linear homomorphism of C(X; Ok) into M(J; Ok). If p is such a measure,
u satisfies automatically the inequality : |u(¢)|, <|| ¢ ||= sup|¢(z)|, (¢ €

T

C(X;0k)). For any ring A, let LC(X;A) denote the space of locally
constant functions on X with values in A. When we have an action of
Zjon X, welet z € Z; acts on ¢ € C(X;0k) by (8|2)(z) = ¢(z - z). We
write z, for z € Z; = Z; x (Z/JZ)* the projection of z to Z.

Terminology. — We say that a measure p : C(X;0k) — M(J; Ok)
is arithmetic if the following three conditions are satisfied :

(5.1a) There exists a positive integer £ such that for every ¢ € LC(X; Q)N
C(X;0k),

1(9) € Me(Jp™; Q).
(This integer £ will be called the weight of p).

(5.1b) There are a continuous action : Zy; x X — X and a finite order
character £ : Z; — O such that p(¢)|lz = 2L€(z)u(4|z) for every
¢ € C(X;Ok), where £ is the weight of p.
(5.1c) There exists a continuous function v : X — Ok such that (v|z)(z) =
z2v(z) for z € Z; and for each 0 < r € Z,

& (u(8)) = u(v" ) for d= g
dg

We say a measure p : C(X;Ok) — M(J;Ok) cuspidal if p has values in
S(J;0k).

After stating the main result, we shall discuss several examples of
arithmetic measures : Let K be a finite extension of Lk (the quotient field
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of Ak), and let Z be the integral closure of A in K. We shall suppose that
(5.2) K is defined over K (cf. (3.1a)).

Replacing K by a finite extension if necessary, we may assume this
condition without losing much generality. We fix throughout this section
a primitive homomorphism Z-algebra A : h°(N;O0k) ®r, T — I with
character ¢ : (Z/NpZ)* — O. We write 9, (resp. ¢') for the restriction of
¥ to (Z/pZ)* (resp. (Z/NZ)*) and ¢p for epypw™F for each P € Xy,(7)
of weight k. For P € X,14(Z) with weight k > 2,let fp € Si(To(Np™),¥py’)
be the ordinary form belonging to A at P. Let f3 denote the primitive
form associated with fp, and we write Np™(?) for the conductor of f3.
By Theorem 4.1, if ¢p is non-trivial, then fp = f3 and r(P) = ro(P). If
¥p is trivial and k(P) > 2, then fp # f% and r(P) = 1 but ro(P) = 0.
When vp is trivial and k(P) = 2, both the cases occur, and we then have
that ro(P) = 1 or 0 according as f = f2 or not (the special case when
ro(P) = 1 with trivial ¥p corresponds to the case where the automorphic
representation of f2 is special at p; otherwise, it is always principal at p).
For each normalized eigenform f of conductor C and of weight k, taking the

primitive form f, associated with f, we shall define a root number W(f)
by

fl (& 75) =wng:

This number W (f) gives the constant term of the functional equation of

e

L(sa f) = Z a(na fO)n—s

n=1

and also appears in the constant term of the functional equation of the
(primitive) Rankin product D(s,f,g) (e.g. [11, §.9]). Thus W(f) can
be canonically factorized into a product of local factors. Let Wy(f) be
the p-factor of W(f) and write W(f) = Wp(f)W'(f). The explicit form
of W,(fp) can be given in the language of Jacquet-Langlands theory
of automorphic representations (cf. [17]). To explain this, let 7 be an
automorphic representation of G1;(A) for i = 1 or 2, where A denotes
the ring of adeles of Q. (When ¢ = 1, = is nothing but a Hecke character
of the idele group A*). We factorize 7 into the tensor product of local
representations ® mq over all the places q of Q. Let e denote the standard

q
additive character of A/Q (which coincides with the character : =
exp(—2wiz) on the infinite part R of A). Then the constant term e(m,e)
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* of the functional equation can be factorized as e(m,e) = He(rq,eq) (eq =

q
elq,)- Let C(n) = H C(mq) be the conductor of 7 (see Weil [34, VII] when

q

i = 1, and Casselman [4] when ¢ = 2). The conductor C(r,) is a power
of the prime g. When i = 1, the restriction of m, to Z; and that of 7
to Z% = ]:[Z;< are induced by a primitive Dirichlet character modulo

q
C(mg) and C(w), respectively. Using the same symbol  and m, for the
corresponding Dirichlet characters, we define the Gauss sum by

G(r) = Z 7 (u) exp(2wiu/C(w))

u mod C(w)

and G(mg) = Z mq(u) exp(2min/C(my)).

u mod C(mg)

Then it is well known (e.g. [34, VIL.7]) that

(5.3) If i =1, then
Tp(C(mp))G(Tp)/|mp(C(mp))G(Tp)|  if C(mp) > 1,
1 if C(m,) = 1.

Now we consider the case of i = 2 and suppose that « is the automorphic
representation attached to fo. Then we have that

W(f) = [[ e(mq, €q), Wo(f) = e(mp, €5) and W'(f) = [[ e(mq, €)-

q#p

e(mp,ep) =

It is known (e.g. [4, Remark, p. 306] or [5, § 4, 5, and 6]) that
(5.4a) W'(f) = W(f) if C = C(f) is prime to p,

(5.4b) [W'(f)lp = 1; i.e., W'(f) is a p-adic unit in Q,,.

(5.4c) Write C = C,C' for a p-power Cp, and C' prime to p. Then

W'(flx) = x(C"YW'(f)

for each Dirichlet character x modulo a power of p.

When 7, is super cuspidal, the nature of W,(f) is purely non-abelian,
and thus one cannot express it by the Gauss sums. However, when 7, is not
super cuspidal, Wp(f) has an expression in terms of the Gauss sums, and
we shall give here its explicit form. Since we have greater interest in the case
where f = fp|x for a point P € X,1¢(Z) and since in this case, 7, is either
principal or special, we do not lose much generality by this restriction. We
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thus assume that , is either a principal series representation 7(c,a’) or a
special representation o(a, ') for quasi characters a, o' of Q. Then one
knows from [7, Remark 4.25 and Th. 6.15] that

(5.5a)

or m, = (e, a’),

e(a,ep)e(a’,ep) if either mp, = o(a, @') with ramified
Wp(f) =
—a(p)/|a(p)| if 7, = o(a, @) with unramified a.

We say that f is p-minimal, if f has a minimal conductor in the class of
twists f|x by characters x modulo powers of p (i.e., C(f|x) > C(f) for all
finite order characters x : Z; — _Qx). If 7, is not super cuspidal, then f is
p-minimal if and only if either a(p, fo) # 0 or p JC(f). In this case, 7, =
o(a,a') or 7, = w(a,a’), and « is unramified [14, Lemma 10.1]. Suppose
hereafter that m, is not super cuspidal and f is p-minimal. Let £ be the
character of fo. If 7, = 7(a, ), then we may assume that o is unramified
and thus a(p) is one of the non-zero root of the quadratic polynomial :
X2 — a(p, fo)X + E()P, 0! (p) = € (PP (€ = El(zjormyx) Gle) = 1
and o' = ¢, on Z;. If m, = o(a, '), then &, is trivial and a(p) = a(p, fo)-
Thus we have by (5.5a)

(5.5b)

1 if Cp =1,
Wp(f) = { —a(p, fo) /pF 2/ if 7p = o(a,a’),
(€ ()a(p, fo)Pp*/?)G(&) HCp=p"

with r > 0 and 7, = 7(a, ).

If we take the convention that G(§,) = 1 when &, is trivial, and also if we
take the convention that (¢'(p)a(p, fo)p~*/2?)° = 1, the first case of (5.5b)
can be considered as a special case of the last formula in (5.5b). Let € be
a Dirichlet character of conductor p”, and write the conductor of {,xi as
p”". Then, similarly as above, we have, if v > 0(y' > 0),

(5.5¢) Wy (flx) =

{ (a(p)/P*)1 (€ (p(p)a(p) /P*/?) GO)G(&x)  if mp = m(a, @)
G(x)*€¢' (p)"p™" if 7, = o(a, ).

When 7, = 7(a, ), we can also write
Wo(f1x) = @52 [a(p)) (0* /2 [a(p)E ()" p~*7)2G(x)G(&X)-

When f = fp for some P € X,;(Z), we always have that a(p) = a(p, fp),
and by (5.5b,c), we know the exact form of Wy(fp|x).
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We now define an Euler p-factor of D(s, f2) as in Th. 4.5 for
Pe Xalg(I) :

(5.6) S(P) = S(Ap)

(-1 if yp =id and fp = f9,
(¢’(p)a(p, f}l)z)foﬂ’)
= ﬁ pk(P)
y (1 _ ¥'p(p)ptP ) (1 N ¢'¢P(P)Pk(P)_2)
[ a(p, fp)’ a(p, fp)?

if either 1 p is non-trivial or fp # f3.

Note that the condition that p = id and fp = fQ is equivalent to saying
that 7, is special and k(P) = 2 (for f = fp). Here we follow the convention
that ¥p(p) = 1if ¢p is trivial, and ¢p(p) = 0 if ¥ p is non-trivial. We take

(5.7) Q(P) = Q(\p) = 20O 17?2 < f3, 2 >¢

in (4.13) as a transcendental factor of the Rankin product for fp, where C
is the conductor of fp. As shown by Shimura [30](31] (see also § 6 in the

text), we know that if g belongs to M,(Jp™;Q), then for integers m with
0<m<k-¢

Dynp(+m, fp,9)
(27”-)£+2m—lQ(P)

We shall choose and fix an element H € T (H # 0) which annihilates the
module of congruence Cy(A;Z) defined in (4.3). This is possible because
of (4.4c) in Th. 4.3. When the annihilator of Co(); Z) is principal, we shall
choose H € T so that H generates the annihilator of Co(); Z). This happens
in the following situations : Let R be the local ring of h°(N; Ok) through
which ) factors. The annihilator of Co(A;Z) is principal when one of the
following conditions are satisfied :

(i) R = Homj, (R,Ak) as R-modules (cf. Th. 4.4 (4.6b));

(ii) Z is a unique factorization domain; for example, when 7 = Ag (cf.
Th. 4.3).

Thus, only when the annihilator of Co();Z) is principal, an intrinsic choice
of H up to unit factors in T is possible. Let u : C(X;0g) — M(J;0k)
be an arithmetic measure. We write £ (resp. £ : Zy — Of) for the weight
(resp. the character) of u as in (5.1a,b). Suppose that

(5.8) w(@)|T(p) =0 for all ¢ € C(X;Ok).

is an algebraic number.
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Under (5.8), u automatically becomes cuspidal by Th. 2.2. For each finite
order character x : Z; — Q ", put

LC(X,x; Q) = {¢ € LC(X;Q) | (¢]2)(z) = x(2)¢(z) for all z € Z;}.

Now we are ready to state our main result :

THEOREM 5.1. — Let the notation and the assumption be as above.
Then there exists a unique generalized measure (in the sense of § 3)
® = &** € Meas(X; Ok )®o, I with the following interpolation property :
for each pair (P,m) € Xa4(Z) x Z with 0 < m < k(P) — £ and for each

¢ € LC(X,x; Q), we have the following evaluation of the measure ®p at
P:

S(P)H(P)™! /W Pv"ddp

_ _ _gDanp(l+m, fp, u(d)|eTs)
=G ly! 1pp(t+2m)/2 (. B P ,
(¥p) (fp)7'p° a(p, fp) (2mi) 1P
t = (P, £,m) = [N, JIN~HP)2 JH2HmD(¢ + m)T(m + 1),

where B is a positive integer such that u(¢) € M,(T1(JpP)), 73 =
( J(;,G —01) and [N, J] is the least common multiple of N and J.

For the validity of the above evaluation formula for P € X,g(Z), we
of course have to assume that H(P) # 0, but by Th. 4.2, we can always
choose H so that H(P) # 0. Since the right-hand side of the formula is
independent of the choice of H, the measure ® divided by H is intrinsically
determined. The uniqueness of the measure ® follows from Lemma 3.3.
The existence will be proven in § 9. Now we shall give several examples of

arithmetic measures and for each of them, we write again the version of
Theorem 5.1 :

Example a. Theta measures ([11, § 2]). — Let V' be a vector space
over Q of even dimension 2k, and let n : V — Q be a positive definite
quadratic form. We shall write S(z,y) = n(z + y) — n(z) — n(y) for the
corresponding inner product. Take a lattice I in V so that n(I) C Z, and

write I* for the dual lattice of I and A for the discriminant of I; i.e., we
put

I={zeV|S,I)CZ},A=[I":1],
W={z eI |n(z) € Z},W =limW/p"I

r

and W* ={weW|n(z) € Z;}.
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Let M be the level of I, i.e. the smallest positive integer such that
Mn(I*) C Z, and write M = Jp® with (J,p) =1 and 0 < § € Z. Then as
seen in [11, § 2], we have the theta measure on W whose values belong to

M(J; Ok) defined by

0#)= 3 $w)g"®

wew

where ¢ is in C(W;0k). Let n : V — Q be a spherical function of
degree a in the sense of [11, § 1], and we denote by the same symbol
the natural extension of 7 to a function on W to 'Qp by continuity. (Since
the spherical function always has values in a finite extension of Q on V,
to define its continuous prolongation 1 on W, we do not have to take the
p-adic completion of ap). We suppose that 7 has values in Og on W. Then
we shall also consider the measure 70 defined by

n6(¢) = 0(ng) = > np(w)g"™ € M(J; Ok).
weW

By definition, the restriction of  to W* satisfies (5.8) and is thus cuspidal.
The natural action of Z on W via the multiplication of integers extends by
continuity to an action of Z; on W and W *. By the classical transformation
formula of theta series (e.g. [11, Prop. 1.1]), we can verify that 70 satisfy
the conditions (5.1a,b) for £ = k + a, and the character £ is given by

(=D A

m

§m) = (~——) (mez, (mJp=1)

a

b)' The condition (5.1c) is obviously

satisfied by the function n : W* — Z,. By the construction of ®**, which
will be done in § 9, it is obvious that

for the quadratic residue symbol (

$nmddY > = / ¢ dDp .
wx wx

Thus, we obtain from Th. 5.1 the following result which is in appearance
a little stronger than Th. 5.1 :

THEOREM 5.1a. — Let the notation be as above. Then there exists a
unique generalized measure ®° = ®9,\ € Meas (W*; Ok )®p, I with the
following interpolation property : for each quadruple (P, m,v, ¢) consisting
of P € Xp¢(Z),m € Z with0 <m < k(P)—k—ca and ¢ € LC(W*,x; Q),
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we have that

SPHP)™ [ ngnmaat

= t(P,k + a,m)W'(fp) 1 G(yp) PPt 2g(p, fp)~F
x DJNP(K‘ +a+ m, va 9(7I¢)lu+a7'ﬁ)
(27r,i)n+a+2m—1 Q(P)

where (3 is a positive integer such that 8(ng) € My1o(T1(JP°)).

Here are some remarks about the theorem, which is a generalization
of [11, Th. 2.1 :

(i) If we write the level M of § as M = Jp® with § > 0 and J prime to
p and if ¢ factors through W/p I, then 8 as in the theorem can be given
by 6 + 2v (e.g. [11, Prop. 1.1]).

(ii) If K is sufficiently large, any homogeneous polynomial function F' of
degree d on V can be written as a finite sum of functions of the form nn”
with d = a + 2r. Thus if k&(P) > d + &, by Th. 5.1a, we can evaluate the

integral :
/ pFd®Y,.
W X

(iii) When dim(V) = 2 (i.e. K = 1), n is essentially a norm form of
an imaginary quadratic field. In this special case, a detailed study of the
measure 9% for a fixed P with k(P) = 2 is done by B. Perrin-Riou [25],
which includes with other things a p-adic interpolation of the Hasse-Weil
zeta function of the abelian variety attached to fp ({16, Th. 7.14]) over the
imaginary quadratic field associated with n.

Example b. The measure attached to modular forms ([11, § 8]). —
Fix a p-adic modular form g € M(J;Ok). Then we can define a measure
g : C(Zp; Ok) — M(J; Ok) by

o0
pe(P) = Z #(n)a(n,g)q" € M(J;0k) (cf. [11, Prop. 8.1)).
n=0
If g € S(J; Ok), then p, is cuspidal. Even if g may not be in S(J; Ok), its
restriction to Z is cuspidal and satisfies (5.8). If we take the linear form
v:Z, — Ok given by v(w) = w and let Z; act on Z, by z-w = z3w, then
kg satisfies (5.1c). Further suppose that

g is a classical modular form in My(To(J7%),& Q). -
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Then p, satisfies (5.1a,b) for £ and £ : Z; — Of ([11, Prop. 8.1]). Thus we
can specialize Th. 5.1 to the measure p,. Since it is a routine work to derive
the formulation of the general theorem for py from Th. 5.1, we shall make
explicit the p-adic L-function attached to A and p, in the case where g is a
normalized eigenform in Sy(T'o(Jp?),£). We consider the Rankin product

(59) D(safP;g) ZDC(safg’QO)a

where C is the least common multiple of C(g) and C(fp) and where gy is
the primitive form associated with g.

Let M(g) (resp. M(Ap)) be the motive associated with go (resp. f%
for P € X,4(Z)). Then the primitive Rankin product D(s, fp,g) is the
L-function attached to the motive M(Ap) ® M(g) ([6, § 1]). By the recent
solution of the local Langlands conjecture for GL(2), we know that

D(safP7g) = L(s’7r X 7l”),

where 7 and 7’ are the automorphic representations associated with f2
and g, respectively, and L(s, 7 x «') is the L-function attached to = x «’
defined by Jacquet [18]. The Euler factors of L(s,m x ©') are completely
determined by Gelbart and Jacquet [18] and [8,§ 1]. By their results,
D(s, fp, g) coincides with D(s, fp, g) if there is no finite place ¢ where 7 is
super cuspidal and 7 is equivalent to the contragredient representation of
7q up to the twists by unramified characters. Let £p be the set of primes
where D(s, fp,g) and D(s, fp,g) have different Euler factors. Then Xp
is conjectured to be independent of P but this assertion is still an open
question in general. The following facts are known ([16, § 7]) :

(5.10a) If f3 has no supercuspidal prime at least for one P (i.e. £p = ¢),
then Xp = ¢ for all P € Xa4(Z) (with k(P) > 2),

(5.10b) Xp is independent of P except for finitely many P in Xag(Z).

Thus in the case of (5.10a), we know the identity D(s, fp, g) = D(s, fp,9)
for all P. Anyway, by this difficulty, we are forced to consider D(s, fp,g)
instead of the primitive D(s, fp, g).

Since pgx = Xpg for each finite order character x : Z; — Q—x, we
may assume that g is p-minimal without losing much generality. As seen,
for example, in [14,Lemma 10.1], a primitive form f is p-minimal and is
not super cuspidal at p if and only if either a(p, f) # 0 or the conductor of
f is prime to p. Especially, f is p-minimal and is not super cuspidal at p.
Let h be the primitive form associated with gIZp (or equivalently, it is the
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primitive form associated with g°|¢’ for the restriction £’ of & to (Z/JZ)X).
We define for f = g, g, h and f2 the algebraic numbers a(f) and o/(f) by

(>}

(5.11) (- a(H)p )1 = (Hp ) = a@™, Hlp™.
n=0

We assume that a(fp) = a(f2) = a(p, fp), which is a p-adic unit by
definition. We further suppose that g is primitive of conductor Jp° and
p-minimal. If 7, is not super cuspidal, at least one of a(g) and a'(g) is
non-zero. Thus we suppose in this case that a(g) # 0 and a(g?) = a(g)”’.
Define a(h?) and o' (k?) by o/(k?) = o/(g)” and a(h?)a(g?) = p*~€ (p)
(we use these symbols only when 7, is not super cuspidal; i.e., a(g) # 0).
These numbers a(h?) and o'(h”) coincides with the numbers defined by
(5.11) for f = h” except when 7, is special. Now let us define an Euler
p-factor supposing that =, is not super cuspidal : Write the conductors of
x and &yx as p” and p"', respectively. Then we put
(5.12a) E;(s) =

s—1 s—1 !
(s@arm) (Gamagy) it m i principal or 7 > 0
- (EGg;iz_fﬁ) if ,, is special and v = 0,
(5.12b) Es(s) =
s—1 s—1
(1 - a)(cggfzf))z(fg)) (1 - ogzl(’;z(‘(’g)iizf?,)) if @), is principal or v > 0
s—1

(1 - a_(h‘iL)a(—_G_) if m;, is special and v = 0,

P)

(5.12¢) Es(s) = (1 -X(p)e’(fp)a(g”)p~*)(1 = (&x)(P)e (fp)e (h*)p™°),

where we have taken the convention that x(p) = X(p) = 0 or 1 according
as v > 0 or v = 0 (this convention also applies to £,x). We further put

E(s) = E1(3)E2(s)Es(s).
The following lemma is due to (a suggestion made by) B. Perrin-Riou :

LemMA 5.2. — Let the notation be as above. Suppose that g is
primitive of conductor Jp® and p-minimal. Let x be a Dirichlet character of
conductor p”. We regard x as a character of Z;; and extend it to a function
on Z, by putting 0 outside Z; (thus a(n,g|x) = O if p divides n even if
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X is trivial). Let 8 be the smallest exponent so that g|x € Sy(To(JDp%),¢),
and put

D(e + m) = pﬁ(£+2m)/2a(p, fP)—ﬂDJNp(e +m, fPa (ng)IlTﬁ)
Then we have

(i) Suppose that m, is not super cuspidal. Then we have
D(£+ m) = W'(g)G(x)G(&x)x(J)E(E + m)D(£ + m, fp, g°|X)-
Moreover (3 is given as follows : Let 1, denote the trivial character mod p.

Then
2 if x =1, and § =0, _
,@={6+1 if § > 0 and either x =1, or x =&,
v+4" otherwise.

(ii) Suppose that ,, is super cuspidal. Then we have

D(E + m) = X(J)W’(g)Wp(glx)])B(e+2m)/2a(p, fP)—BD(e +m, fPa QPIY):

where

2y ifé isodd and 2y > § + 1,
) if§ is odd and 2y < 6 + 1.

Proof. — (i) Almost by definition (cf. [30, Lemma 1]), we have that if go
is the primitive form associated with g|x, then

Dynp(s, fr,90) = E3(s)D(s, fp, 9°1X)-

Thus we shall express D(£+m) by Djnp(¢+m, fp, gf). By the p-minimality
of g, if m, = m(c, ') for quasi characters o and o' of Q;, then one of a
and o/, say «, is unramified. If 7, = o(a,a’), then both o and o' are
unramified. Note that 7(a, ') ® x = m(ax,a’x),o(a,a') @ x = o(ax,a’x)
and o/ |z;,< = &p. Thus, if both ax and o'y are ramified (i.e. v > 0,7’ > 0),
then g|x is primitive of conductor JC(x)C({px), and thus in this case,
B=~++" and

{ max(6,2y) ifé is even,
8=

(9b)lms = W (glx)9”IX-

~ Since W(g|x) = W’ (g)x(J)Wp(g|x)_by (5.4c), the desired formula follows

from (5.5c). When either x = 1, or £, then an explicit computation shows
that

90 — a(p, 90) 9ol [P] if6>0 _
glx = and either x =1, or ¢,
g9 - a(p,9)gllp] + &' (P)p*gllp?] f§=0and x =1,
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where gy is the primitive form associated with g|x. This shows the value of
B as in (i). Now, applying 7 to this formula, we have
(9l = '

— a(p, 90)p™ W (glx) (9§ — a(p: 90) P g5 [p))
if 6 > 0 and either x =1, or £,
_ — —
P~ (D)W (9)(9” — € (P)alp, 9)pg’|[p] + € (P)P™*¢°|[p?])
if 6§ =0 and x =1,.

We now suppose that § > 0,x = 1, and m,, is principal. Then we see that
6=4"and

D(£+m) = —p" ¢/2+m g £2)=7 1o ()W (g)
x(1— (a(f3)/(g))p™™)Dynp(€ +m, fp, ).

Note that
0 —m 0 pypl—m—E pm+e~1
(1~ (a(f$)/a(g)p™™) = ~a(f2)a(g”)p ™4 (1~ W)-

This combined with (5.5¢) (or (5.5b)) shows the result. The case where
6 > 0 but either , is special or x = £, can be treated similarly; so, we
next suppose that § = 0 and x = v,. Then D(£ + m) is equal to

I la(fR) 72 (D)W (9)
x(1 =€ (p)a(p, 9)p" 4™ + € (D)a(£2)20* 2™ Dy np(€ + m, fp, 9°).

Since a(g?)a(h?) = € (p)p!™! = a(g?)d(¢°) and € (p)a(p,g) = a(g”) +
a(h?), we know that

(1-€ (p)a(p, 9)a(f2)p*~¢~™ + € (p)a(f2)*p' ~472™)
= (1 - a(g”)a(f2)p' ™)1 — a(h)a(fR)pt ™)
=£ (p)p' 42" f2)2 Ea (€ + m).

This finishes the proof of the assertion (i). The value of 3 as in the second
assertion can be found in Carayol [3, p. 208 (g) and 8.1]. The set of
supercuspidal representations is stable under the twist by quasi characters
of Q;, and hence if m, is supercuspidal, then g|x is always primitive. In
this case F3(s) is reduced to 1 and hence the assertion (ii) is obvious from
(5.4c).
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THEOREM 5.1b. — Fix an integer a with 0 < a < p— 1. Let g be a
primitive form of conductor Jp®, of character ¢ and of weight £. Suppose
that g is p-minimal and let 7' = ®m; be the automorphic representation of
GL3(A) attached to g. Then there exists a unique element D = D, in the
quotient field of I®, Ak such that

(i) If H € I annihilates the module of congruence Cy()\;Z), then
HD e I@Ox AK1

(ii) For each point (P,R) € Xag(T) x Xaig(Ak) such that 0 < k(R) <
k(P) — £, D(P,r) is finite and its value is given by

D(P,R) = tW'(fp)"'W'(9)G(¢p) ' G(€)erw® ¥R (1) S(P)~

G(epw® F RN G(epw B¢,V E(L + k(R))
D(L+ k(R), fp, 9°leg' w*(®)=2) /P, g, R)
if m, is not super cuspidal,
Wp(glsta—-k(R))pB(R)(l+2k(R))/2
a(f2)BPDE + k(R), fp, ¢l " P~2) 1P, g, R)
if m, is super cuspidal,

where t = t(P,£,k(R)) as in Th. 5.1, B(R) is equal to (8 for x = e gw® ()
as in Lemma 5.2, and

Q(P, g, R) = (2mi) F2F(B-1Q( P)G(€) (see 4.15)).

This result follows directly from Lemma 5.2 and Th. 5.1.

Example c. Eisenstein measures. — Fix an integer b > 1 prime to Jp.
Let ¢* : C(Z;;0k) — Ok denote the well known measure corresponding
to the Kubota-Leopoldt p-adic L-function; namely, for each finite order

character x : Z; — (—ix and for each positive integer m, it satisfies (e.g
[12, Chap. 4])

[ x@ap-ide = (L= s xO)L - m, ).
Zy

We shall define several measures E® : C(Z;;0k) — M(J;O0k),Gm,
E :C(Z5;0k) — S(J;0k) for each m > 1 and € : C(Z, x Z;;0k) —
S(J; Ok) by the following formulae :

2 /Z RO /Z J ¢d<"+;( Y sen(d)(@(d) - bg(bd))a",

=1 din
(d,Jp)=1
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2 /Z J¢(z)dE= f: ( > sgn(d)¢(d))q",

n=1 din
(n,p)=1 (d,Jp)=1

2 @uon=3( T @ gn/a)e

n=1 d|n
(n/d,Jp)=1

for ¢ € C(Z;;Ok), and
2/z,,xZJ d(w, 2)d€ = Z ( Z Sgn(d)¢(n,d))q"

n=1 d|n
(nrp)=1 (d,Jp)::l

for ¢ € C(Z,, X ZJ;OK).

The measure 2E® has been employed in [11, § 6] and we have the following
formulae by definition :

(5.139) ([ o= [ (6)-botba))aE,

d
(5.13b) Gm(9)|, = d™? ( /Z ] z},‘mqs(z)dE) ford = qa,

(5.13¢c) / w™P(2)d€ = dm(/ d)dE) for each 0 <m € Z.
Z,xZ, Zy

The existence £ and E follows from that of E® (by (5.13a,c)), which is
verified in [11, § 6]. The existence of G,, will be shown in the next section.
Anyway, the existence of all these measures follows from a general result of
Katz [20, VI]. Note that £ and FE satisfy (5.8) and hence are cuspidal. We
can verify directly that G,,(¢)|e = 0 for all ¢ € C(Z;;0k) and thus, G,
is also cuspidal. For each pair of finite order characters x,n : Z; — —Qx
and for each positive integer k, define

Eom= Y. (X nan/dx(@d)q" € Qliall-

n=1 0<d|n
(nyp =1

If p:ZX — Q and x(—1) = (—1)¥, then we have
Gl [ awpeE = Bmn) € MiIpQ).
p X4y

When one considers the series Eg(x,7n) for the primitive trivial character
7, the constant term of the form L(1 — k,x)/2 or the term of the form
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¢(z — Z)~! with ¢ € C may appear. However, after applying the twisting
operator for the character i,, we see easily that these terms disappear.
Then (5.14) follows from [14, Lemma 5.2] (see Lemma 5.3 below). Even if
x(=1) # (=1)*, the formula (5.14) remains true but it simply vanishes;
i.e. Ex(xn,m) = 0. This shows that £ is arithmetic of weight 1 with the
trivial character ¢5,, where the action of Z; on X = Z;,‘ x Zj is given
by z(w,2') = (23w, z2’) and the function v : ZX x Z; — Z, is given by
(w, z) ~ w. Now we shall apply Th. 5.1 to the measure £. To formulate
our result in a final form, we prepare a lemma.

LemwMmA 5.3. — Let x and 7 be primitive Dirichlet characters modulo
u and v, respectively. Define a function on the Poincaré upper half plane
by -

EQ(x,n)(2) = 61(w) L(0,n) + 6(v) L(1 ~ k, )

+62(u,v>—(’— +3° 3 x@n(n/d)d1qr,

27" Z - —z_) n=1 0<d|n
where

_f27t ifk=u=1,
bi(w) = { 0  otherwise,

8x(u,v) = 27! ifk=2andu=v=1,
25570 otherwise,

271 ifv=1
6(v) = ’
©) { 0 otherwise.

Suppose that nx(—1) = (=1)*. Then EQ(x,n)|xy = xn(7)E}(x,n) for all

0 -1
v € I'o(uv) and for 7 = (uv 0 > , we have

EO6 )kt = (wo™)*2(=1)G(n)/G() EL [, X)-

(On the space of Eisenstein series, the action of 7 is no longer unitary and

hence the root number (uv=1)*/2p(—1)G(n)/G(X) may not be of absolute
value 1).

Proof. — Since the above fact is well known, we here only give a
sketch of a proof in the (absolute convergent) case : k > 2. The case where
k = 1 and 2 can be treated similarly (see § 6 in the text). According to
Hecke, we define a convergent Eisenstein series by

Gi(ziab)= Y, (es+d)
(c,d)=(a,b) mod uv
(c,d)7#0
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Then, as shown by Hecke [9], we have the following Fourier expansion of
this series :

Gr(z;0,0) = 6(a) (k) +an( Y kk—lsgn(n)e(w)),

mn>0 uv
m=a mod uv

where ((k,b)= Y a7k,

n=b mod uv
n#0

o _ (=2m)*
8(a) = { 1 if a =0 mod uv, and ¢, = (wo)FT(F)

0 otherwise.
We consider the sum

Ey(6m) =), > n(@)X(b)Gr(z; au, b).

a=1 b=1

Then the coefficient of e(uv) (n # 0) of E¢(x,n) is equal to

v uv
bd
oY@ > dsga(@) ) xBe(—).
a=1 dln b=1 uv
n/d=aeu mod uv
Taking the following well known formula into account :
ifv fd,
Z w0e(2) ={ o itold
we see easily that
Ei(x,m) = cxv*G(X) ER (x;)-
This shows the first assertion. To prove the second assertion, we note that
EiOem@) = Y, nle/wx(d)(cz +d)~*.
(c,d)EVZXZ
Thus we have that
EL(omlr(z) = )*? Y nle/u)x(d)(uvdz — o)7*.
(c,d)EUZXZ

By substituting (c,d) for (dv, —c/u), we know that

B (6l = (vu™ ¥/ 2n(~1) E, (7, %)-
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This shows the last assertion.

We fix a primitive character x modulo J and consider, for each pair

of finite order characters (£,n) of Z;;, the Eisenstein series

Ee(xn,m) = / )

Z, xZ

n(w)x€(2)z, " dE.

Write C(&n) = p” and C(n) = p”. Then by Lemma 5.3, the root number
We(x€n,n) = W(Ee(x¢&n,n)) is given by
We(xén,n) = (Jp"' ~")*/*n(~1)G(n)/G(xEn)
= JH27 (=) en(D)x (" )P 2T G(x)G(n)G(En).

We now define, for each primitive character 6 and for P € Xa4(Z)(k(P) >
2), the primitive L-function of f, by

L(s, fp,0) = )_ 6(n)a(n, fp)n~°.

n=1

Let 6, be the p-part of & and decompose § = 6’0, and write C(8,) = p”.
We define a(f2) and o'(f2) by (5.11) for f = f2 and assume that
a(f2) = a(p, fp).- We define an Euler p-factor by

R S PR ' ONT (s
§)=(—2— -2 Y1-a 0 .
Ep(s) ( 07 ¢ )) (1 ) )(1 (fp)0(p)p™")

Then, by virtue of Lemma 5.3, taking EJ(x¢n,7) as g (and EQ(n,xén) as
g°) in the proof of Lemma 5.2, and regarding g as if it were a cusp form
whose automorphic representation at p is the principal series representation
7((£)p> 7p), We obtain

COROLLARY 5.4. — Let the notation be as above, and suppose that
X is primitive of conductor J. Let 3 be the smallest exponent of p so that

Ey(x€n,n) € My(To(IPP), x&n%).

Then, we have

176(2+2m)/2a(p) fP)—ﬁDJNp(e + m, fPa Ee(Xﬁﬂ, 77)|TB)
= (-1)* 2" en(1)G()G(n)G(¢n)
X Eygn(€+m)L(€+m, f3, xEn)Ey(m + 1)L(m + 1, £2,7).
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Let ® = ®% be the generalized measure obtained by applying Th.
5.1 to the Eisenstein measure £ on Z; x Z;. We fix a primitive character

x of conductor J (i.e. x : Zy — Q). Then we derive another measure ¥X-*
on Z; x Z; out of & by putting

/ B(w, 2)dTE*
Z:ng

= /zx ; d(w, 2p)x(2)d®p (¢ € C(Z; x Z;;0k))

for all P € X(Z). Then we obtain easily from Th. 5.1 and Cor. 5.4 the
following result :

THEOREM 5.1c. — Let x be a primitive Dirichlet character of con-
ductor J. Then there exists a unique generalized measure ¥ = ¥X:* in
Meas(Z; x Z,’,‘;(’)K)@I with the following interpolation property : For
each pentad (P,&n,£,m) consisting of finite order characters §,n : Z, —
Q% Pe Xaig(Z) and non-negative integers £,m with 0 < m < k(P) — £,
we have
SEHEP™ [ awurme@etae

Zy X2y

G(x)G(n)G(&n)
W'(fp)G(¥p)
X Ey(m + 1)L(m + 1, f3,7)/(2m3) > 1Q(P),
where t' = (—1){[N, JIN—*P)/2Jm+=1D (¢ 4+ m)T(m + 1).

Note that (273)¢+2™~1Q(P)G(x)"1G(n)"1G(&n)~! ~ Q(P, g, R) as in Th.
5.1b for R = P,, , and g = EQ(xén, 7).

= ¢¢n(J)( ) Exen(l+m)L(L+m, £2,3En)

Example d. The measure associated with homomorphisms of Hecke
algebras. — We now want to interpolate the p-adic L-functions Dy(P, R)
obtained in Example b considering even g as a variable moving along an
irreducible component of the Hecke algebra. Thus the result here include
Th. 5.1b as a special case if g is ordinary. Let A’ : h°(J; Ok) — Ak be a
homomorphism of Ak-algebras and ¢ : (Z/JpZ)* — Of be its character.
We fix a topological generator u € I' and identify Ax with Og[[X]] by
1(u) — 1+ X. Put A(n; X) = N (T(n)) € Ok[[X]]. Then we shall define a
measure \j : C(ZX x I;0k) — S(J;0k) by

L. #werax = Y smamen - o
X n=1

P
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for ¢ € C(Z;';Ok), s € Z, and for each finite order character ¢ : I' — Of.
We let Z; act on Z x T by z(w,7) = (23w, < 2z, > 7), where < 2, >€T
is defined by < z, >= w(zp) " 1z,. If we write fi . for fp with P = Py,
then we see easily that

'

[ swetrtan = [ swius.
ZX xT zZy

for the measure pys, ., as in Example b and thus Aj satisfies (5.8). Let
M be a finite extension of Lk defined over K and J be the integral
closure of A in M. We can generalize the above construction for a
more general homomorphism X' : h°(J;0k) — J of Ak-algebra. Put
J* = Homp, (J; Ok). Then, by the duality in Th. 1.3, we have an Ok-
linear map

(5.15) N2 J* = 5°(J;0k),

which is the adjoint of ). We shall now extend A'* to C(Zp;Ok)
®o J*, which will be denoted by )} : for each ¢ € C(Z);0k)and j € J*,
we define

§690)= [ ddu, forg=X"() €5°(JiOx),

where 4 is the measure as in Example b. Then, by continuity, we have an
Ok-linear form

Xy : O(22;0x)®0y J* = (Meas(Zy; Ox)®0,T)" — 5(J; Ok).

If we let Z; act on Z, via w — 22w and if we define \j|z for z € Z; by
(Xol2) (¢ ® 5) = Ao((4]2) ® j| < 2p >), then we have

(5.16) olz =€(2)Ay for any z € Zy,

where £ is the character of \'.

The linear form ) is not exactly a measure but a generalized measure
" with values in S(J;Ok) in the sense of § 3. Then (5.16) is the formula
corresponding to (5.1b); thus, A is of weight 0 with an abuse of language.
For each Q € X,5(J) with k(Q) > 2, we denote by gq the ordinary form
belonging to A’ at @ in the sense of [14, Cor. 1.5]. We fix an integer a with
0<a<p-1,and for (P,Q, R) € Xag(Z) x Xag(J) x Xaig(Ak), we denote
by E(P,Q,R) the Euler factor E(k(Q) + k(R)) in (5.12a,b,c) for g = g3
and x = w* *R)gp,
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THEOREM 5.1d. — Let A : h°(N;Ok) ®a, Z — T be a primitive Z-
algebra homomorphism and let X' : h°(J;0k) — J be another primitive
A k-algebra homomorphism. Suppose that T and J are defined over K.
Then there exists a unique element D in the quotient field of I®J ® Ak such
that (i) if H € T annihilates Co(X; ), then H(P)D(P,Q, R) is integral; i.e.,
HD € I® J®Ak and (ii) for each point (P,Q,R) in Xaig(T) x Xaig(J) x
Xag(Ak) with 0 < k(R) + k(Q) < k(P) and k(P) > k(Q) > 2,

D(P,Q,R) = cwS(P)'E(P,Q, R)
xD(k(Q) + k(R), fr, g lex'w*®~*/Q(P,Q, R),
where Q(P, @, R) = (2mi)F(@+2KR)-1Q(P)G(£¢') as in (4.15),
c=c(P,Q,R) =[N, J]
x N~k(P)/2 J(H(Q)+2E(R)/2D (k(Q) 4 k(R))T'(K(R) + 1),

w=w(P,Q,R) = W'(g@)W'(fp) ™' G(¥p) ™!
xG(£q€")G(erw* MM)G(epw® M Pgg)epwHB(J).

In Th. 5.1d, we have interpolated the values of the function E(s)
'D(s,fp,g£2|x). When ) is the restriction of A to h°(N;Ok), the added
Euler factor E(s) has a trivial zero. In fact, in E(s), we have the following
factors : with the notation of (5.12b), Ea(s) = E5(s)E3(s) and

s—1
1 - —XPP if 7!, is principal or v > 0,
(s) = (1= ey i o princial or
s—1
_ e . d~=o0.
(1 a—(’%a—m) if m, is special and v =0

In either case as above, we can express EY(s) uniformly as :

a(ge) ,_
Ej(s) = (1 = x(p)—cp'~@).
a(fp)
Since a(gq)/a(f2) is always a p-adic unit, if k(R) > 0, E3(k(Q) + k(R))
does not vanish for all (P,Q) € X(Z) x X(Z). However, taking R = Py =
Py, and varying (P, Q) on X(Z) x X(Z), we know that

E"(P,Q) = B3 (k(Q)) = 1 - a(gq)/a(fp) = 1 - a(p, f@)/a(p: fp)

has a trivial zero at the diagonal divisor A = {(P,P) | P € X(Z)} on
X(Z)%. Note that as a function of (P, Q) on X(Z)?, E"(P,Q) is an element
of Z ® Z. Thus we may ask whether D(P,Q, P)/E"(P,Q) has a pole at
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A or not. An answer to this question can be given as follows : we fix a
topological generator 2(u) € I' and identify Ax®o, Ax with Og[[X,Y]] by
regarding X (resp. Y) as a function on Z, x Z, given by (s,t) — u® — 1

(resp. (s,t) — u® — 1). We regard Ok/[[X, Y]] naturally as a subalgebra of
I®T. -

THEOREM 5.1d'. — Let the notation be as in Th. 5.1d. Suppose that

A’ is the restriction of A to h°(N;Og). Write D(P,Q) for the p-adic L-
function :

X(I)z 3 (P’Q)HD(P1Q’P0) Eap

as in Th. 5.1d for a = 0, and put D'(P,Q) = D(P,Q)/E"(P, Q) as an
element of the quotient field of I®ZI. Then

(i) If H € I annihilates the module of congruence Cy();Z), then
(X -Y)HD' € I&®1,

(ii) (X(P)-Y(Q))D'(P,Q)|p=q = (1+Y(P))(log(u))¢([N, JIp)/[N, J]p
for all non-critical P € X(T).

(We say that P is critical if P lies on the support of Cy(A;Z) in X(Z).)

By this theorem, D' has a non-trivial simple pole at A and interpo-
lates the values E'(P,Q, Po)D(kQ, fp, f3)/UP,Q, o), where

E'(Pv Q’PO) = E(P7 QaPO)/E"(Pa Q)

Theorems I and II in § O are a special case of Theorems 5.1d and d’. We
shall give a proof of these theorems in § 9.

6. Real analytic Eisenstein series
and the holomorphic projection.

Here we shall review the explicit Fourier expansions of (group the-
oretic) Eisenstein series of integral weight by following Shimura’s method
which has been applied to those of half integral weight [28]. We shall do
this here because this explicit Fourier expansion gives one of keys for the
proof of Th. 5.1 and it is hard to find adequate references. We shall give
only the outline of the proofs. Main references are [28] and [32].

In this section, we always write, for v € C and s € C, v* =
exp(slogv), where we shall define the logarithm by logv = log |v| 4+ 0 with
—7w < § < 7. We also write e(z) for exp(2w+/—1z) for £ € C. Let N be a
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positive integer (which may be divisible by p in this section), and let ¥ be a

Dirichlet character modulo N. For v = (Z 3) € I'y(N), put ¥(d) = 9(d)

and j(v,2z) = (cz+d) for z € $H. Put T, = {:!:(1 m) |m € Z}. If

P(-1) = (=1)* for X € Z, the function v — Y(7)j(7,2) |3 (7,2)| 7
depends only on the left coset of 7 mod I' . Assuming that (—1) = (=1)*,
put

n(s,¥) = Z Y(n)n~",
(n =1
(6.1) B n(zsiv)= D $()ily,2) il 2|7
YEL o \To(N)
Galersi) = Biaasiolhe (§ )

where we define f|, ;v for each function f: $ — C by
(flasM(2) = F(1(2))i (v, 2)Mi(r, )72

Then these series are absolutely convergent if Re(s) > 1 — —)l, and we can

2
express G} y as follows, when Re(s) > 1 - A,
o] d-1 Z T
(62) Gin(z59) = N33 g@)d™ 3 (= +52+s,9),
d=1 ( 1";—‘)0_1 N d

o0
where S(z;a,8) = Z (z 4+ m)"*Z +m)P for a,8 € C, which is
m=-00
absolutely convergent if Re(a+3) > 1. By the Poisson summation formula,
we have

(e ¢]

(6.3) S(z;0,0) = Z e(mz)é(y,m;a,B) for z =z +1iy € 9,
where £ is a function on Ry x R x C*(R4 = {z € R|z > 0}) which is
given by an absolutely convergent integral

(9]

&y, ta,0) = / e(—t-z)(z +1iy)"*(z — iy)‘ﬂda: if Re(a+8)>1

—00
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Put ' = {2z € C|Re(z) > 0} and
w(z;a,B) =T(B) 2P /oo e~ (z + 1)* 2P 1dz,
0

which is absolutely and uniformly convergent if Re(z) > 0 and Re(8) > 0.
This function has a holomorphic continuation on $' x C? and has a
functional equation w(2;1 — 8,1 — a) = w(z;a,B) (cf. [28, § 2] and [32,
Th. 3.1]). Furthermore, we have the explicit formulae ([32, Prop. 3.2]) :

(6.4a) For0<neZ, w(z,n+1,B)

n B n 1‘\[3+k _
=kz=()(:)ﬂ(ﬁ+1)...(ﬂ+k-1)z '°=kz=%(:)(r(—ﬂ))z k.
(6.4b) For0<n € Z, w(z;a,—n)

2 _ e Tk—a+1) _
:kgo(:)(l—’a)@—‘a)...(k—a)z k=k2=o(:)——}(—l—_—;)—-z k,

(6.4c) w(z;0,0) =w(z;1,08) =1.

We can express £(y, t; a, 3) by w(z; a, 8) as follows :

(6.5) [ (V=1)P~2(2m)°T(a) "} (2y) Pt>~ e > Ve (4myt; o, B)
if t >0,
) (R en)PT(8) 7 (2y) e g e 2
{v.tih) = 4 x w(4wylt]; 8, @) ift<0,
(V=1)#~%(2m)**T(a)~'T(B) !
\ xT(a+ 8- 1)4ry)—*# ift=0.

Thus the function £ also has an analytic continuation, and the series (6.3)
always converges at the point where £ has no singularity. In exactly the
same manner as in [28, § 3] (actually, it is much simpler), we have

THEOREM 6.1. — We have the following explicit Fourier expansion :
(29)° (V=1 Ln (X + 25,9)G3 n (2, 8;9)
2
= ZZ(29)' T (s)"'T(A + 8)"'T(A + 25 — 1)Ly (A + 25¢ — 1, %)
N
2 >\+s oo o o]
+(Z) o+t Y Y
N m=1 0<dim

P(d)d~ "2 ipAtele (%)w (41r]:[ny iA+ s, s)
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( et 3 3

m=10<d|m
(d)d"x —2s+1 ( ]:rnz)w(‘l"];ny;s,)\-}-s).

Moreover, this series converges absolutely and uniformly on any compact
subset in C outside the small circles of singularities of the constant term

By evaluating, this series for A > 0 at s = 0, we have

59

CoRroLLARY 6.2. — We have for each A > 0 that

(== :/_) VLN (A, $)G3,v(N2,0;9)

N 2 A *
= (Tf:) L)L (X, 9)(E3 v (2, 0;9)) AT
=61 —L(o ¥) +62(¢)-—H (1 - “)

81y N ¢

(T (2)" wt@)etna)

n=1 0<d|n

where §), 1 is the Kronecker symbol, Ty = ( ](\)f _01) and

_f1 ifA=2andy =1n
62(¥) = 0 otherwise.

Moreover ¢ = Ln(X,%)G3 ny(Nz,0;9) satisfies g|xy = 9(7)g for any
v € To(N); especially, g € Mx(Lo(N),¥) if A # 2 or ¢ # 1.

By evaluating, the series in Th. 6.1 for A > 0 at s =1 — ), we have

COROLLARY 6.3. — We have for each A > 0 that
'1N2"A(\/—_)’\LN(2— A 9)(Ny)' 2G5 N (N2, 1= X ¥)

=712 AN T2 (\/—_)ALN(2 A P) B n(z 1= X))t

= -LN(l -\9)+ Z Y (d)d*e(nz).

n=10<d|m

This function gives an element of My (To(N), ).
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Now we shall introduce Shimura’s differential operator :
1 ,¢ d
6 = __(_ + ._), 87" = bpram—2-..60426¢ for £,m € Z.
2w 2ty dz
For v € GLy(R) with det(y) > 0, it satisfies the formula :
6¢* (fley) = (67" f)le+2m-

A relation between differential operators § and d = ¢ d 1

"'lE:%d—z 1S given
by
~/r\y D(m+r)
(6.6) 65, = ——(—4wy) "t
;(t I(m+r—t)
z Ft-m-r+1
- (T)( MY gyt
t=0 t r(l-m-—r)

We may evaluate the series of Th. 6.1 at s = —r or s = 1 — A + r with
0<r< % Then, by applying (6.4a,b) and (6.6), we know that for each
A
< =
0<r< 3
(673‘) y_rE;\+2r,N(za _T;¢)
_ T
T(A+7)
(6.7b) Y TATES o n(21 = A —T59)
_ (4
I(r+1)

This can be also verified directly by using the series expression (6.1) (cf.
129, (24))).

Let L be a positive integer prime to p. We shall consider the Eisenstein
measures on Z, introduced in Example c in § 5 : for each x : (Z/LpPZ)* —
Q”, we have

1 1
680 | X = 6200 }LI (1-2)

+(2m)"™(LpP) 2 (V=D)L (m) Ly (my X)ES 10(20 %) lm 75,
(6.8b) (1 — x(b)p™)! / x(z)zp'dE®
Zy

(—4m)" 85 E3 n(2,0;9) ([30, (2.9)]),

S (¥ T Ex (2,1 = X59)).
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_ _12_mL1—1—;" B1-2) \/_m
=7 p 2 (V=1)"Lgy(2-m,X)
X(y' "™ Ep, 15(2,1 = m; X)) |lm7s,

where 73 = ( L(1)73 _01) . Note that the above formulae are valid for
any (3 such that the finite order character x : Z; — Q" factors through
(Z/LpPZ)*. We put
(6.9)
Bt = (1= xOP™)™ [ x(@)zp-1ap?
L

1 [e o}
= —2-LLp(1 —m,x)+ Z Z x(d)d™ '¢q® form >1,

n=10<d|n
o m—1
Gz = [ X@Gm =3 T x@(2)" 0"
Iz n=10<dln d
¢(Lp)

G, 1p(X) = b2(x) + G, p(x) form >2.

8mLpy
These are modular forms in M, (To(Lp?); Q) except for Ga,1p(2Lp)-

For each integer m > 0 and for each subalgebra A of C, let A™(A)

denote the space of functions f on $ with the Fourier expansion of the
following form :

> n
f=) a(n,y)el —=z) forsome0< M € Z,
nz—:o (M )

where a(n,y) is a polynomial in (4ry)~! with coefficients in A of degree
less than or equal to m. For each congruence subgroup A of SLy(Z) and
its finite order character ¥ : A — A, we define a subspace AJ*(A; A) (resp.
A (A, 9, A)) of A™(A) consisting of functions f in A™(A) such that

(i) fley € A™(C) for all v € SLy(Z); ‘

(ii) flgy = f for all v € A (resp. fley =¥(7)f for all v € A).
The following fact is shown in [30, Lemma 7] :

LEMMA 6.4. — Let ¥ be a Dirichlet character modulo N, and
suppose that A is a Q-algebra. Then for each f € AP*(To(N),; A) (resp.
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f € AR(T1(N); A)), if k > 2m, we can express

f=3 6 5. fr with f, € Mi_sr(To(N),%; A)

r=0

(resp. My_2-(T'1(N); A)).

These modula.r forms are uniquely determined by f and are cusp forms if
f is a cusp form.
We write H(f) for fo in the above formula. This gives a map, if
k> 2m, H: AR(T1(N); Q) — M(T1(N);Q), which will be called the
m

holomorphic projection. For each f = Z(47ry)" ) e A™(C) with f®

=0
holomorphic, we put ¢(f) = f(%), which will be called the constant term of
f. Then c defines a map ¢ : AT(T'1(N); A) — A[[q]].

LEMMA 6.5.

(i) (Shimura) If f is a cusp form in Sg(To(N),%), then
< f,9 >n=< f,H(g) >N for all g € AP*(T'¢(N),%;C) with k > 2m.
(i) If k > 2m and £ > 2n, then H(géph) = (—1)"H(hé;g) for all
h € A7 (I'1(N),C) and g € A}(T'1(N); C).
(iii) Suppose that N is prime to p and f € AT (T'1(Np?); Ko) for a finite
extension Ko/Q. Let K be the closure of Ky in Q. If k > 2m, then the
formal q-expansion c(f) is in fact an element of M(N; K).

(iv) Let g € A}(T1(NpP);Ky) and h € My(NpP);Ky), and let e
be the projection to the ordinary part on M(N;K). If £ > 2n, then

e(H(gbrh)) = e(c(g)d™h) in ]A—(N, K) ford = qd—q.

Proof. — The assertion (i) is given in [30, Lemma 6]. The second as-
sertion follows from the argument which proves [11, Lemma 5.3]. If we write
m

f € AP(T1i(NPP); Ko) as f = D 6p o, fr for fr € Mi—ar(T2(NPP); Ko),

r=0

m

then we have ¢(f) = Z d" f, by comparing the constant term of the both
r=0

sides. This shows the assertion (iii). To see (iv), we write

t
g&,’ch:Z&g_zjfj for t=n+r and s=k+£+2r.
J=0
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Then by the formula (6.6), we have that

t
c(g85h) = H(gb%h) + Y, &’ f; = c(g)d"h.

Jj=1
Note that eod = 0 (cf. [11, (6.13)]). This shows the assertion (iv).

The following fact is a modification of a result of Shimura [30, Th. 2]
and [31, p. 217] :

THEOREM 6.6. — Let h € Sp(To(LpP),¥) and g €
My(To(LpP), €). Then if 0 < m%(k -0,
Dry(l+m,h,g)
=1t < W|kTrpe, H((9leTrpe )E t—am (Bk—t—2m,Lp(€¥))) >Lpe
andif%(k—lf) <m<k-t

DLp(e +m, ha g)
=t< hplkTLpﬂ7H((9|lTLpf’ )65:151’:’7:71_-:2(G,l—k+2m+2,Lp(£¢))) >LpBs
1 R
where t = 26+igit1(Lpf)2 ¥R (/) K(T(m + 1)T( — m))~! for
Jj=L+2m.

Proof. — We shall give a proof of the case when —;—(k‘— ) <r<k-{,

since the other case can be treated similarly. By the Rankin-Selberg
convolution, we have (cf. [30, (2.4)]) that

(4m)°T(s)DLp(s, by 9) = Lrp(2s +2 — k — £, £9)
< h[)’ gE:—l,Lp(z’ s+1- k’ f"/’)i‘lsﬂ_k >Lpﬁ
and thus,
DLp(e"' m, h7g) =< h’pig -E >LpB

where E = CoLpp(€—k+2+2m,E0)E}_y 1,(2, L+m+1—k; Ep)yt—k+ml
with a constant Co #0. Writer =k—f—m—1and A=k —£—2r. Then

E|tps = C165G) 1, (£9) for a non-zero constant Cy by Cor. 6.3 and (6.7a).
We see easily that

< h?,gE > ,8=< hP|7,(g|T)(E|T) >Lps for T = Tpps.

This shows the assertion.
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Th. 6.6 combined with Lemma 6.4 shows the following result of
Shimura [30] and [31] :

COROLLARY 6.7. — Suppose that h is primitive of conductor C. Then
the number

1)1.'.11(z +m, h1 g)
7‘,l+2m+l < h,h >c

is algebraic for each integer m with 0 < m < k — £.

7. Duality theorems.

We shall study here the Og-dual space of h°(N;Ok) ®a, Z and
generalize Th. 1.3. This duality theorem is crucial to the construction of
the convoluted measures which will be constructed in the next section.

Write Ck for C(I'; Ok) for simplicity. As explained in the beginning
of § 3, we have a duality :
(7.1) HomoK(CK,OK) 'ZAK, HOmoK(AJ,OK) ?_"CK.

We shall fix a topological generator u of I'. Let A be a reduced algebra
finite flat over Ag. Let M be a compact .4-module and put M* =
Homp, (M, Ok). Then we can define a pairing

(7.2) <,>: M x M* - A*
by < m,m* > (a) =m*(a-m) form € M, m* € M* and a € A.

ProprosiTION 7.1. — Suppose that there exists a projective system
{Miapij}i,jEN of A-modules such that

(i) M = lim M; as A-module;
i

(ii) pij is surjective for all i > j;
(iii) The Ok-module M; is free of finite rank for each 1.
Then we have that M* ~ ]__ ((_m)M*) ®ox Ok [p™Ok) and

(M*)* ~ M as A-module. Moreover the pa.lrmg (7 2) induces isomor-
phisms : Hom 4(M, A*) ~ M* and Hom 4(M*, A*) ~ M

This fact may be well known but it is important for the sequel; so,
we shall give a proof. If M is finite flat over Ak, the conditions (i), (ii)
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and (iii) can be verified easily, and they are also satisfied by h(N; Ok) and
- Meas(X; Ok) for a p-adic space X asin § 5 (for A = Ok[[Z,]] or Ak).

Proof. — Since Hom 4(M, Homo, (A, Ok)) ~ Homop, (M ®4 A, Ok)
~ M™* naturally, the last assertion follows from the first. By the assumption
(i), the adjoint map pj; : M} — M is injective for each pair j > i. Put

= lim M;". Then we see from [1, IL.6.6] that

M = lim M; = JimHomo, (M, Ok) = Homo, (E, Ok).
i i .

On the other hand, for each pair m > n, we have a commutative diagram
of natural maps :

0 — p"lE/p"E —— E/p"E -+ E/p"E

0 — p'E/p"E — E/p"E - E/p"E.
Obviously, li }__pm 'E/p™E = 0 and thus E = L_E/me is without p-
torsion. There is a natural map :

Homo, (E,Ok) — Homo, (E, Ok),

which is bijective because E is dense in E and every Ok-linear form is
uniformly continuous. Thus we know that

M = Homox (-E, OK) =

By the assumption (iii), M;/p™M; and M [p™ M} are mutually Pontryagin
dual modules. Thus we know that

E/p™E ~ Homgz, (Jim M;/p™M;,Z/p™Z)
i
~ Homg,(M/p™M,Z/p™Z) ~ Homgz,(M,Z/p™Z).
Therefore we see that

E =)im E/p™E = limHomgz, (M, Z/p™Z) = Homz, (M, Zy)

m m

([1,11.6.3.Prop.5]).

Note that M* ~ Homo,(M,0Ok) ~ Homo,(M,Homz, (Ok,Z;)) =~
Homz, (M, Z,). This shows that E = M*. Note that

(M*)* = Homp, (M*,0k) ~ Homo, (E, Ok) ~ Homp, (E,Ok) ~ M
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This finishes the proof.

COROLLARY 7.2. — Let M and E be compact A-modules. Suppose
that M satisfies the condition of Proposition 7.1 and E ~ Hom 4(M, A*)
as A-module. Then if we denote by <,> the pairing : M x E — A* which
gives the above isomorphism, then the pairing '

<,>0: M x E - Og

defined by < m,e >9=< m,e > (1) gives an isomorphism : E ~ M*.

This is a direct consequence of Proposition 7.1.

ProrposiTioN 7.3. — Let M be a compact A-module, and let a be an
ideal of A. Put M*[a] = {m* € M*|a-m* = 0 for all « € a}. Then we
have a natural isomorphism : (M/aM)* ~ M*[a].

Proof. — Since A is noetherian, we may choose a finitely many
generators ai,...,a, of a. Then by definition, we have that M/aM =
M/ouM + ...+ a,M and M*[a] = ﬂM*[ai]. We consider an exact

sequence :

M — M — M/aM —0,
w w
(m1,...,mp) — aymy+...+am,

which yields another :

00— (M/aM)* — M* — (M*)"
w LUT
m @aim.
i=1
This shows the result.

Now we shall return to the situation of § 5 : Let K be a finite
extension of Lk defined over K and Z be the integral closure of Agx
in K. Put 7* = Homo, (Z,0k) and 7 = Homa, (Z,Ak). They are
naturally Z-modules. By Lemma 3.1 and (7.1), we know that as Ag-
modules, 7* ~ C%,7 ~ A% for d = d(Z) = [K : Lk]. Let N be a positive
integer prime to the fixed prime p > 5, and write

<, > h(N;OK) x S(N;0k) = Ay =Cxk



A P-ADIC MEASURE ATTACHED TO THE ZETA FUNCTIONS 67

for the pairing defined by < h, f > (v) = a(1, f|[hy)(y € T'). Then, Th. 1.3
combined with Prop 7.1 shows that

(7.3) h(N;Ok) ~ Hom, . (S(N;Ok), Ck),
_S—(N; OK) >~ HomAK (h(N; OK),CK)
as Ag-modules under <, > .

THEOREM 7.4. — Let M be a compact Ax-module satisfying the
conditions of Prop. 7.1 for A = Ak. Then we have a canonical isomorphism
of T-modules : (M ®a, I)* ~ M* @4, . In particular, we have a canonical
isomorphism of modules over h(N;Ok) ®p, L :

Homo, (S(NV; Ox) ® I,0k) =~ h(N;Ok) ®, T,

which is given by the pairing
(’) : (h(Nr OK) RAn I) X (E(N’ OK) Ak i-) - OK

defined by (h®i, f®p) =< h,f > (p(2)) fori € I,h € h(N;0k) and
f e S(N;Ok).

(The tensor product h(N;Ok) ®a, I and S(N;Ok) ®, I are automat-
-ically complete under the p-adic topology, since the Ax-modules 7 and 7
are free of finite rank (Lemma 3.1).).

Proof. — We simply write A for Ax. The result follows from the
following formal calculation and Cor. 7.2 :

Homz(M ®A I,I*)

~ Homz(M ®4 Z,Homy (Z, A*)) (Prop. 7.1)

~ HOInA(M I®TI, A*) [1, II.4.1]

~ Homp (M ®5 Z,A* @r A)

~ Homp (M, A*) ®x Homy (Z,A) (Lemma 3.1, [1, I1.4.4])
~M* @z T (Prop. 7.1),

since M ®, T again satisfies the condition of Prop. 7.1 for A = Z. The fact
that the isomorphism given for S(N; Ok) is a morphism of modules over

h(N; Ok) ®4, Z follows from the explicit form of the pairing given in the
theorem.

COROLLARY 7.5. — Let M be a compact Ag-module satisfying the
condition of Prop. 7.1. For each P € X(Z;0Ok), we have a canonical
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isomorphism of I-modules : (M* ®,, I)[P] ~ M*|P N Ak]. In particular,
if P € Xa4(Z; Ok) and k(P) > 2 then

(S°(N; Ok) ®n, I)[P] = S2(p)(®r(p),€p; Ok) canonically
as h°(N; Ok) ®p, Z-modules.

Proof. — From Th. 7.4, we know that (M ®j, I)* ~ M* @4,
By Prop. 7.3, we have that (M ®j, Z/PI)* = (M @z, I ®1 I/PI)*
(M* @A, I)[P]. On the other hand, we know that M ®,, I/PZ
M ®p, Ak /(PN Akg), since T/PT ~ Ak /(P N Ak)(~ Ok) naturally as
Ag-modules. Again by Prop. 7.3, we have that (M ®x, (Ax/(PNAK)))* ~
M*[P N Ak], which proves the first assertion. Then Th. 2.1, Prop. 1.2 and
Prop. 7.3 show the last assertion since PN Ax = Py(p),c,, by definition.

R R

Remark 7.6. — For each P € X(Z; Ok), we have a unique Ok-algebra
isomorphism ip : Z/PZ ~ Ok by definition. We thus have a canonical
element ¢p € (Z/PI)*. The identification of (Z/PZ)* with Ok as in the
proof of Cor. 7.5 is explicitly given by : Ox 3 a — a-ip € (Z/PI)*.
For each P € X,4(Z; Ok) with k(P) > 2, if we write the natural algebra
homomorphism for k = k(P),r =r(P) and € = €p as

T, * ho(N; OK) — hZ(Qr,E; OK) = ho(N; OK) RAx AK/Pk,EAK

and the natural inclusion as

et Sp(®r,6;0K) — ?O(N; Ok),

then we have that

(74) (A ®i,ue(f) ®bip) =< mee(h) ® (i mod P),bf >
= b(i mod P)a(1, f|mk.(h))

for h € h°(N;0k), i € I, b € Ok and f € S3(®,,¢;0k), where the
pairing (,) is as in Th. 7.4 and <, > is as in Prop. 1.2.

COROLLARY 7.7. — Let M be a compact Aj-module satisfying the
conditions of Prop. 7.1 for A = Ak. Let ¢ : M* — _§°(N; Ok) be a Ak-
linear map. Put ¢ = ¢ ®id : M* ®p, T — 5 (N;Ox) ®A, Z. Then for
each P € X,5(Z; Ok) with k(P) > 2, we have the following commutative
diagram :

(M* @r, DIP] —  (§°(N;Ok) @y I)[P]
Ul |
M*[Py(p).ep) = S3(®,(p),€p; Ok),
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where the vertical isomorphisms are those of Cor. 7.5.
This is a direct consequence of Cor. 7.5.

Now we shall define a key linear form :
£=1£,:5(N;O0k) @, I — Ok

for each primitive homomorphism A : h°(N;Ok) ®p, Z — Z. Let Co(A; 1)
be the module of congruences as in (4.3), and let H € Z(H # 0) be the
element chosen in § 5 before Th. 5.1 which annihilates Cg(); Z). Since X is
primitive, A induces a decomposition of K-algebra : h°(N;Og) @5, K =
K & A as in Th. 4.2. Let 1x be the idempotent corresponding to the
first factor. Then, by the very definition in (4.3), we know that H - 1x €
h°(N;Ok) ®a, I. Then, by Th. 7.4, we shall define £ by

(7.5) Ug) =0r(9) = (H -1x,g) for g€ S (N;Ok)®n, I.

PropoSITION 7.8. — Let P € X,g(Z;Ok) with k(P) > 2. Let
At h°(N;0k) ®a T — I be a primitive homomorphism of Z-algebras
and A\p : hz(P)(QT(p),z-:p;(’)K) — Ok be the induced Ok-algebra ho-
momorphism. Let hg(P)(Q,(p),ap;K) = Kp & Ap be the decomposi-
tion of K-algebra induced by Ap as in (4.2) and 1p be the idempo-
tent of the factor Kp(~ K). Then the restriction of {5 to the sub-
space (§°(N; Ok) ®a, I)[P|(= S p(®r(p),p; Ok)) is given by £x(g) =
< H(P)-1p,g > = H(P)a(1,g|1p) for g € S} p)(®r(p),€P; Ok)- Espe-
cially H(P)-1p € hZ(P)(‘I’r(P),aP;OK)-

This is obvious from Th. 4.2, (7.4) and the definition (7.5). If
the Gorenstein condition (4.5a) is satisfied, Th. 4.4 (4.6c) asserts that
H(P) gives the exact denominator of 1p in h{ P)(¢I>r( p),€p; K) relative
to hz(P)(‘Pr(p),Ep;OK).

We define a linear form for P € Xa4(Z; Ok) with k(P) > 2
£p =L, : S3(p)(®r(p),ep; K) — K by £p(g) = a(l,g|1p)

with the notation of Prop. 7.8. This linear form is studied in [11, § 4], and
we have a formula for g € Sk(p)(To(Np™),epypw™*; Q) with each n > r(P).

<h n—r(P)’ > Non
(16)  tolgle) = alp, fo)Pr-rpin-rPne-y LT 9 2pr,
< hp, fp >Nprep
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where hp = fhlx ( N(;) ” —01) and [p®] is the operator defined in § 1.III
(gle is known to belong to Si(p)(Co(Np"(P)), e pypw=*; Q) for any n > r(P)
[11, Prop. 4.1], and thus £p(gle) is well defined).

8. Convoluted measures.

In this section, we shall develop a general theory of p-adic convolution
of a measure over the group Z;, and a generalized measure as in § 3. Let J
be a positive integer prime to p and put

Z;=lm(Z/Jp"Z)* =T x (Z/JpZ)* for T =1+ pZ, C Z;.
T

Let A; = Ok|[Zs]] be the continuous group algebra of Z;. Take a positive
integer L which is a multiple of J and is prime to p. Let M (resp. U
and V) be a compact .4;-module (resp. compact Az-modules) satisfying
the conditions of Prop. 7.1 for A = A; (resp. A = Ar). For our later
application, we take as M either Meas (X;Ok) for a p-adic space X, 7
asin § 5 or Z®0,J as in Th. 5.1d. We shall fix a continuous character
a: Zp, — O and define the action of Z;, on C(Z; Ok) (twisted by a) by

(¢laz)(z) = a(2)p(2z) for ¢ € C(ZL;Ok).

Thus we allow the twisted action of Z on' C(Zr;Ok) which may differ
from the usual one. Let E : C(Z; Okg) — U* = Homp, (U,Ok) and ¢ :
M* — V* be AL-linear maps (for the twisted action on C(Z;Ok)). Here
we consider M* as an Ap-module via the natural projection : A, — A;.
We suppose that there is an Ok-linear map m : U* Qo, V* — S(L; 0k)
such that
m(u ®v)|a = m((u|a) ® (v|a)) for a€ Ak.
As an example of U* and V*, we may take
U* = M(L;0g) and V*=5(L;Ok).

Note that M(L;Ok) is a topological ring with the product induced
by Okl{lg]] (which is the usual product of modular forms : (f,g) —
f-9), S(L;Ok) is an ideal of M(L;Ok) and the multiplication of
M(L; Ok) satisfies the condition of m as above. In applications in this
paper, we always work under this choice of U* and V*. However, if one
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considers also modular forms of half integral weight, there is another
example of U* and V* different from those treated in this paper. The case
of half integral weight will be studied in detail in our subsequent paper.

Thus, this application in mind, we shall treat the topic a bit more in general
than what is necessary here.

We shall naturally extend ¢ to ¢ ® id : M* @, U* = V* Qp, U*
and define

(8.1) @: M*®0,U* = 8(L; Ok) by $ = mo (p ®id),

where M*&U* is the p-adic completion Jim(M* ® U*)/p?(M* ® U*) which
may not equal to its profinite completion. We say that a function ¢ : M —
U* is continuous if it is continuous under the p-adic topology on U* and
the topology of the profinite group M. Thus if ¢ is Ok-linear, the ¢ is
continuous if and only if there exists ¢ > 0 for any j > 0 such that ¢ mod
P : M/PM — U*/p’U* factors through M;/p’ M;, where M = Jim M; as
in Proposition 7.1. Then, if U = Jim U, the image of ¢ mod p’ is actually
contained in Uy /p U} for some k. We denote by Hom.(M,U*) the space
of all continuous O k-linear maps. Then we have

Hom.(M,U*) = (li_m.li_m,HomOK (Mi/piMiv U*/ng*)

J 1

= liﬂli_m)HOmoK (Ml/ij, ®('),.< U, OK/ijK) = (M®OKU)*’
j i

where M®p, U is the profinite completion of M ®0, U.
LEMMA 8.1. — M*&0, U* = lim(M* @ U*)/p(M* @ U*)
= Hom.(M,U*) = (M&o, U)*.

Proof. — We have a natural map : M* ®o, U* — Hom.(M,U*) given by

dQu — (m — ¢(m)u). By definition, M®p, U = lim M; ® U; satisfies the
ij

assumption of Proposition 7.1 and thus

(M&0, U)* = lim(lim M; ® U}) ®ox Ok /p"Ox = M*&®0, U*,
m
which proves the assertion.
Hereafter by Lemma, 8.1, we shall identify M*®p, U* with
Hom (M,U*). We let Z; act on C(M x Z;Ok) by

(F|z)(m,z) = F(z"'m,2z) for F € C(M x Z1;0k).
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We then define a function E,(F) : M — U* foreach F € C(M xZ1; Ok) by
E.(F)(m) = / (F|z)(m,1)dE(2) for m € M. We equip C(M x Z1;0)
z
with the uniform norm : [|F|l = sup|F(m,z)|p. Since M and Z are
m,z

compact, this space becomes a compact Banach space. The compactness
of M x Z; assures the uniform continuity of F. Thus for any ¢ > 0, we
find a neighbourhood H of 0 in M such that if m — m’ € H, the norm
of the function : Z;, 5 2z — (F|2)(m,1) — (F|z)(m',1) in C(ZL,0k)
is smaller than e. This shows that E.(F) € C(M,U*). For any F €
M*®p, C(Z1; Ok), by regarding F as a function on M x Z, we know

that E,(F) € Homo, (M,U*) = M*®0, U*. Thus we have a Ok-linear
map :

E* . M*éoKC(ZL;OK) b d Homc(M, U*) ~ M*®0KU*.
‘We shall define
(8.2) Ex¢: M*®0,C(Z1;0k) — 5(L; Ok)

by (E * ¢)(F) = ¢(E » (F)) € S(L; Ok) for ¢ as in (8.1).
We shall define another action of Zr, on C(M x Z1;Ok) by

(83) (¢llaz)(m, z) = a(2)$(m, 2z).

ProrosiTioN 8.2. — The action (8.3) of Z;, preserves the subspace
M*®0,C(Z1; Ok) of C(M x Z1; Ok), and the convoluted measure Ex :
M*®0,C(Z1;0k) — S(L; Ok) gives a morphism of Ar-modules under
the action (8.3).

Proof. — The first assertion is obvious; so, we shall prove the second
one. There is a natural projection map : Z; — Z;, and we write z; € Z;
for the projected image of z € Z;. We shall let Z; act on M* ®o, U*
diagonally by (m ® u)|z = (m|z;) @ (u|z).

We also define an action of Z;, on C(M,U*) by

(¢l2)(m) = (&(zs - m))|z,

where the last z acts on the value ¢(zy - m) € U* through the action of
Z1, on U*. The natural inclusion : M*®p, U* — C(M,U*) is compatible
under the action of Z;. Then by definition, ¢ : M*®0,U* — S(L;Ok)
becomes Ajp-equivariant. On the other hand, if we let 2 € Zp act on
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E.(F) € M*®0,U* through the diagonal action defined as above, we
have that

EENm) = ( [ (Flo)em 1)iE@)l

where in the right-hand side, z € Zp acts on ( / (F|z)(zm,1)
Zy

dE(a:)) € U™ via its action on U* for fixed m. Since E is Ap-linear for
the twisted action by a, we see that

([ (Fle)(em, 1aB(@): = [ a@)(Flzz)(em, 1)aE()
V43

ZL

=/Z a(z)F(z7'm, zz)dE(z)
=/Z ((Flla2)|z)(m,1)dE(z) (cf. (8.3)).

This shows that E.(F)|z = E,(F||«2) and the Ap-equivariance of E * ¢ =
@ o E, by definition, since ¢ is Ap-linear.

LEMMA 8.3. — Let a be an ideal of AL, and let z € ZL act on
M*®0,C(Z1;0k) by (m ® ¢)llaz = m ® (¢laz). Then, if Ar/a is
free of finite rank over Ok or Ak, we have a natural isomorphism :
C(Z1; Ok)[a]®ox M* ~ (M*®0,C(ZL; Ok))a].

Proof. — We shall prove the lemma only when Ay /a is free of finite
rank over Ok, since the other case can be dealt with similarly. We have an
exact sequence of Og-modules : 0 — a — Ay, — Ap/a — 0. Since Ay /a
is Ok-free, we have a commutative diagram :

0 — (Ap/a)* —> Ap — a* — 0
Ul l l
0 — C(Z1;0k)la] — C(ZL;0k) — a — 0,

where the horizontal rows are split exact sequences. Thus we have an (split)
exact sequence :

0 — C(ZL; Ok)[a] ®o, M* — C(Z1; Ok)&0, M*

— 0" @0, M* — 0.

The finiteness of rank pAyr/a shows that (C(Z;Ok)[a] o, M*)* ~
M&o,ALja =~ ((C(ZL;Ok)®o0, M*)[a])*. This shows the result.
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CoROLLARY 8.4. — Let ¢ : Z, — Ok be a continuous character and
¥s : AL — Ok be the corresponding Ok-algebra homomorphism. Put
Py =Ker(¢,). Then E * ¢ induces an Ok-linear form :

M ~ C(Z1;Ok)[Py] ®0, M* — S(L; Ok)[Py)

which is explicitly given by
(E * 9)() = p(m = E(z = P! (2)¢(27'm))) (m € M,z € Zy).

Proof. — The identification : O =~ C(Z;Ok)[Py] is induced by the
correspondence : 1 — a1, since we have let Z;, act on C(Z1; Ok) by the
twisted action by a. Then we identify M* with
C(ZL; Ok)[Py) ®0, M* = (C(ZL; Ok)®0, M*)[Py] by
¢ = ((z,m) = Yo~ (2)p(m)).
Then the assertion follows from the definition of E * .
We shall now decompose canonically Z;, =T x (Z/LpZ)*. For each
character ¢ : (Z/LpZ)* — O, we put
C(Z1; Ok)W] = {¢ € C(Z1; OK)|$(Cz) = P(C)d(2)
for ¢ € (Z/LpZ)*}
= {¢ € C(Z1;Ok)|9lal = app(()¢
for ¢ € (Z/LpZ)*}.

If we denote by ¥, : Ox[(Z/LpZ)*] — Ok the Ok-algebra homomorphism
induced by 9, we have an extension

id®e: AL ~ Ak Qox OK[(Z/LPZ)X] — Ak

which is surjective. We write & for the restriction of o to (Z/LpZ)*. Then
by applying Lemma 8.3 to a = Ker(id ® (&),), we have a canonical
isomorphism : C(Z1; Ox)[¥)|®0, M* ~ (C(ZL;Ok) ®o, M*)[a]. Thus,
we know that E * ¢ induces

Exp: M*®0, (C(Z1; Ok)[a™"9]) — S(L; Ox) W],
with the notation of § 1.V.

Let A : h°(N;0k) ®r I — I be a primitive Z-algebra homo-
morphism, and let ¢ : (Z/NpZ)* — Ok be the character of A. Let
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£ =1 : S°(N;Ok) @, I — Ok be the linear form defined in (7.5).
Suppose that

(8.4) L is divisible by N and J.
By extending each function ¢ € C(I'; Ok) to Zy, by
$(2) = &M Y(20)$(< 2p >),

where 2y (resp. < 2, >) is the projection of z € Zy, in (Z/LpZ)* (resp.
I'), we have an isomorphism : C(T';Ok) ~ C(Zr;Ok)[a" 4], which is
the adjoint of id ® (& '4),. We shall identify the spaces as above in this
manner. We shall consider the Og-linear map :

¥ : M*®0, C(T;0k) — 5 (N;Ok)
defined by the composite
U : M*®0, C(T;0k) ~ M*®0,C(Z1; Ok)a™" 9]
28 S 0Kl 2 BN 0x) 8] o F(V; 00

(ie. ¥ = eo Ty o (E * ¢p)), where Tr/y is the operator defined in
§ 1.VI and e is the projection to the ordinary part given in §2. Note
that C(T;0k) ®a, I =~ I* by Prop. 7.1 through the correspondence :
¢ ® 1 (i — ¢(i(3))). Thus we know that

M*®0,C(T;0k) ®ny I~ M*®0,T* ~ (M&0,I)* by Lemma 8.1.

DEFINITION. — We shall define a generalized measure E *) ¢ €
M&o, I by the composite

(85) Ex)p=1£0,0(¥®id): (M&o,I)* ~ M*®0,C(T;0k) ®AK 1

A ld-—o
® S (N;Ok) ®ax 7 ——* Ok.

In the first part [11, p. 189], we used the trace operator instead of T ,n
to define E x) ¢ or more precisely ¥. This change of operators gives much
improvement in the result, and the utility of Ty, /v was found by B. Perrin-
Riou [25]. Note that for each P € X(Z;Ok),

(M&0,T) ®r, I/PI ~ M ®0, I/PI ~ M.

Thus we may consider the image (E *) ¢)p of E %) ¢ in M according to
the above map.
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THEOREM 8.5. — For each P € X,4(Z;0k) with kp > 2 and
¢ € M*, we have (E ) )p(¢) = H(P)p o Ty n o e(¢(m + E.(2. —
a~lepwH(2)zk¢(271m)))), where z, € ZX is the projection of z €
Z1, k=k(P), e =¢p and €p is as in (7.6).

Proof. — One can naturally identify

(M®0,I) ®r, I/PI)* ~ (M ®o, I/PI)* ~ M* R
and ((M®OKI) Bk I/PI)* = (M*®OKC(P; OK) Ak I)[P]
(Prop. 7.3)
~ M*®0, (C(T; Ok)[Pr.e])
(Cor. 7.5)
~ M* ®o, (C(ZL; Ok)[P])
for ¢ = eypwF,

where P; C AL is the ideal as in Cor. 8.4. Then, we may regard (E *) ¢)p
as the restriction of E}¢ to M*®o, C(ZL; Ok)[Pe] (for € = eyw™F), which
is canonically isomorphic to M*. Then by applying Cor. 8.4 to £, we obtain
the result from Prop. 7.8.

9. Proof of Theorems 5.1, 5.1d and 5.1d°.

Proof of Theorem 5.1. — We shall use the same notation as in Th. 5.1.
Especially, we denote by p : C(X;0k) — S(J; Ok) the given arithmetic
measure of weight £ and of character £ and by A : h®(N;Ok)®a,Z — I the
primitive Z-algebra homomorphism. Let L be the least common multiple of

Jand N, and let E : C(Z;, : Og) — S(L; Ok) be the Eisenstein measure
defined in § 5, Example C, which satisfies

2 /Z ) ¢(z)dE = i ( > sqn(d)¢(d))q" € Ok|[q]]-

n=1 din
pln  (d,Lp)=1

We shall define an arithmetric measure uX : C(X;0) — S(L,Ok) out
of the given p by ut(¢) = n(#IL/J)(¢ € C(X;Ox)), where [L/J] :
S(J;0k) — S(L;Ok) is the operator defined in § 1.III. Then one can
easily verify that u’ is arithmetic of weight £ and of character ¢ (which
factors through Z;). We shall let Z;, act on C(Zr; Ok) by

(9.1a) (4ll2)(z) = £(2)z58(2 - 2) (¢ € C(X;0k))
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and on C(Z;Ok) by

(9.10) (¢la2)(w) = zpp(2w) (¢ € C(ZL;Ok)),

where z — 2z - z(z € X) is the action of z € Z; on X as in (5.1b).
The action of Z;, on C(Z;Ok) is the twisted action by the character
a: z +— zp, considered in § 8. As seen in Example c in § 5, E is of weight 1.
Thus, under the action (9.1a,b), the measures E : C(Z1; Ok) — S(L; Ok)
and pl : C(X;0k) — S(L;Ok) become Ap-linear. We write M for this
Ar-module C(X;Ok) and apply the theory in § 8 to uL and E. We take
S(L;Ok) as U* and V* in § 8 and the usual multiplication of S(L;O)
is taken as m. Put ® = E ) p’ € Meas(X;Ox)®0,Z. We shall show
that this generalized measure satisfies the requirement of the theorem. Let
x:Zy— Q" be a finite order character, and let ¢ € LC(X,x; Q). Suppose
that u(¢) € My(T1(Jp%)). Then, by (5.1b), we know that

(92) (@) € Me(To(Jp’),€x) and  p"(g) € Me(To(Lp), X)-

Since £ N 6,, = K, for each finite extension K'/K, K' = K ®x K’
is still a field. If 7' denotes the integral closure of Ag: in XK', we have
a unique scalar extension of A : X = A ®id : h°(N;0k) Qp, T' =
h°(N;Ok)®r, Z®1I' — I'. By construction, one sees that & = E %y u*
is the natural image of ® = E *, u” under the scalar extension map :
Meas(X; Ok)®o0, I — Meas(X; Ok')®0,.,T'. Thus to prove the theorem,
replacing A\, 7 and O by its extension X', 7' and Ok if necessary, we
may assume that the condition (3.1b) holds for Z and P € X,4(Z; Ok).

Write € for ep, k for k(P) and r for r(P) for P € X,4(Z; Ok) with
k(P) > 2. Then we have by Th. 8.5 that

/ ov™d®p

X

= H(P)tp o Ty o /X /Z L et ()2 (™ 27 @) Bt (3) ).
Note that by (9.1a) and (5.1c)

03 o [ [ et @ (@l @B @)

=e(/ZL n(z)zﬁ_j_ldE'/XW"‘dﬂL),
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where we write 7 for eyw™*¢=1x~! and j for £+ 2m. Also note that

(9.4a) /; n(z)z';“j‘ldE = Ex_j,Lp(M|tp
L
1
ifk>j(&0<m< 5(k—f)),

(9.4b) d'ti—k ( /Z n(z)z,';"j'ldE) = Gatj—k,Lp(M)1p
L
if j > k(& k—£<2m),

where d is tﬁe differential operator q% defined in § 1.VIII and ¢, is

the twisting operator in § 1.VII for the trivial character modulo p. We
have to be careful about the fact : [, gv™dul = (L/J)"™d™(ut(¢))
(cf. (5.1c)) and also we shall use the fact that e(hdf) = —e(fdh) and

e(h(flwp)) = e((hlep) f) (Prop. 2.4). Then we apply to (9.3) the above facts
and obtain the formula :

e(/;L n(2)zf " 1dE - /;{ dwmduL)
[ (=J/L)™e((1"(dl1p)d™ (E—j,L5(n)))
ifo<m< %(k—l),
(—=J/L)™e((u" (®)ep)d* "™ (Gaj—k,L(n)))
if%(k—l) <m<k—t

{

Note that fls, = f — (f|T(p))|[p]- Thus by the assumption (5.8) that
w(@)|T(p) = 0 for all $ € C(X;0k), we know that uX(¢)|s, = pX(¢).
Since pl(¢) € My(To(Lp"),€x; Q) for any v > B, we may suppose that 7
is a character of (Z/Lp®Z)*. Then by Lemma 6.5 (ii) and (iv), we have
with the notation of (6.9) that

E—j—1 g7 . mg L
e(LL n(2)z; '~ dE /}(¢V dp )
((=J/L)™e o H(p" ($)87> ;(Ex—j,Lo()))
if0<m< —lz-(k—l),
(=J/L)™e o H(u" ($)85 ;=1 (G ko))

1
if=(k—0) <m<k-—¢.
2
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We write simply g for either H(uL(qb)&,’c"_j(Ek_j,L,(n))) or H(ul(¢)

65;}:;"_102“_,6’ 1p())) according as the above condition on m, where
H is the holomorphic projection defined in § 6. Then, by (7.6), we have
that

/ ¢l/md‘1)p
X

= H(P)a(p, fP)r_ﬁp(ﬂ —r)(k - 1)(—J/L)m< hPlE’;_T]}QII;L/N >Nph .
PyJP 2~ Np~

By (1.7) combined with [27, (3.4.5)], we have that

< kp|[P?77), 91T /N >npe= (L/N)* < hp|[LpP~"/N],g > 10
= (L/N)e/2p£(r_ﬂ)/2 < ff’iTLpp7g >Lpf’1

since  hp|[LpP"/N] = (LpP~"/N)F2fflrpe for T =
0 -1
(Lpa 0 ).Notetha.t

() = (DR (L/T) ™2 (u()erspe)lerrps-

Then the assertion follows from Th. 6.6 and the following formula :

<hp, fp >Npr
9.5) S JP ZNpr
(9:5) < fp,fp >npro

(-1)*W(fp) if fp=f3,
(=1)*W(fp)f®~9/2a(p, fp)
< (1- vpy' (P)p* ! )(1- Ypy' (p)p* 2
a(p, fp)? a(p, fp)®

This formula (9.5) is given in [25, Lemma 27] when k(P) = 2 and the
general case : k(P) > 2 follows from the same computation there or the
formula [30, (3.2)].

Proof of Theorem 5.1d. — Let L be the least common multiple of
N and J. Put & = E *, (M\))* with the notation of the above proof of
Th. 5.1, where (M)l : C(Z);0k) ®o, J* — S(L;Ok) is defined by
(My)E = [L/J) o X} For each Q € Xag(J; Ok) with k(Q) > 2, we have a
natural map :

) if fr # £5.

C(Z2;0k) ®oy T* — C(Z;0k) ®ox T*[Q] ®0y T*

3
— C(Z:;OK) ok J* ®ox I¥ — Ok.
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By definition, this is nothing but the convoluted measure E x) (ng)L for
the measure p,, associated with gq as in Example b in § 5. Then we apply

Th. 5.1b, which has already been deduced from Th. 5.1, and obtain the
result.

Proof of Theorem 5.1d'". — We shall deduce Th. 5.1d’ from the
following result :

THEOREM 9.1. — Let the notation and the assumption be as in Th.
5.1d. Then, for each integer b > 1 prime to JNp, there exists a unique
generalized Iwasawa function ®° in the quotient field of I®J such that

(i) If H € T annihilates Co(\; T), then H(P)®(P,Q) € I&J,
(ii) for each (P,Q) € Xag(Z) x Xag(J) with k(P) > k(Q) > 2, we have

cwS(P)7(1 — ¢ epeg! (b) < b >HEPI=HQ))

x E'(P,Q)D(k(Q), fr,9Q)/UP,Q, Po) if k(P) > k(Q),
3" (P,Q) =< 0 if k(P) =k(Q),ep =€g and ¢ = ¢

but either P # Q or X\ does not factors through X,

— (¢p(Lp)/Lp)(log(< b >)) if P=Q and X' = A|no(v,0x)>

where ¢ = ¢(P,Q,P), w = w(P,Q,Py) as in Th. 5.1d and E'(P,Q)
E(P,Q,P)/E}(P,Q) for Ey(P,Q) defined in Th. 5.1d’ and <b>
bw(b)~! € Z2.

Proof. — Put ¥ = Eb « (W*)L € I®J for (M*)L = [L/J] o \'* and
®°(P,Q) = H(P)~1¥%(P,Q), where E® : C(Z1;0k) — M(J;Ok) is the
Eisenstein measure defined in § 5 in Example c. By Th. 8.5 combined with
the argument which proves Th. 5.1, we know that

¥(P,Q) = H(P)tp o Ty/n o ¢( /Z n(z)5 1B - (gql[L/JD)),

where 7 = epeg' Y€ w!F for k = k(P) and £ = k(Q). By the well known
formula :

[ 5B = ~(o(Ln)/Loog(< b>) € 2y,

Zy
we know that
Iz, n(z)zk~-1dE®

_ { (1—n(b) <b>FHEr_grp(n) ifk>¢,
~ | =(p(Lp)/Lp)log(< b >) if k= and n = id.
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When k > ¢, the same calculation as in the proof of Theorems 5.1 and 5.1d
yields the expression of ®°(P,Q) by the special values of D(s, fp, go|Ts)-
Then in a similar manner to the proof of Lemma, 5.2, we obtain the desired
result. Here note that gg has non-trivial coefficient in ¢ and hence we
have the Euler factor E'(P,Q) instead of E(P,Q,P,). We now suppose

that k = £ and n = id. Then, the similar computation as in the proof of
Th. 5.1 shows that

(P, Q) = ~(p(Lp)/Lp)(log(< b >))H(P)ep(T1/n o e(gol[L/J]).

If X does not factors through X', then by [14, Cor 1.3}, we can find an integer
n prime to Lp such that a(n,gq) # a(n, fp). Note that £p(h|T(n)) =
a(n, fp)ep(h) for any h. On the other hand, for h = T )y oe(gq|[L/J]), we
know that h|T'(n) = a(n, g@)h. This show that £p(T/n oe(gq|[L/J])) = 0.
If ) is the restriction of A to h°(N; Ok) (J = N) but if P # @, the same
argument shows that £p(h) =0 for h =e(fg). HP=Q,then L=N=J

and ¥(P,Q) = —(p(Lp)/Lp)(log(< b >))H(P), since £p(fp) = 1. This
finishes the proof.

Assuming A\’ = Alpo(n;04), We shall now prove Th. 5.1d’. We now
eliminate the dependence on b of the function ®° defined in Th. 9.1. We
choose b so that < b > gives the topological generator v of I" which we
already fixed in § 5. Consider the power series F(X,Y) € Ok[[X,Y]] such
that F(e(u)u® — 1,&'(u)ut — 1) = 1 — e’ (u)u®"? for each s,t € Z, and
finite order characters €,¢’ : I' — O%. We may show the existence of such a
power series as follows : We identify Z2 with I'? by (s, t) — (u®,u‘). Define
functions S, T on Z2 by S(s,t) = v*** —1,T(s,t) =u*~* - 1.

Then, we know that F(X,Y) = -T = 1- (X +1)/(Y +1) €
Okl[[X,Y]]. Note that X — Y = T(1+Y) and 1 + Y is & unit in
AL = Ok|[[Y])- By Th. 9.1, the function D'(P,Q) as in Th. 5.1d’ has the
expression D' = ®°/F in the quotient field of Z®Z. (In fact, the set of
points (P,Q) € Xag(Z)? with k(P) > k(Q) is dense in X(Z)?.) Thus by
Th. 9.1, we know that for non-critical P

(X =Y)D'(P,Q))lp=q = T(Y + 1)"(P,Q)/Flp=q
= —(1+Y(P))®"(P,P) = (1+ Y (P))((Lp)/Lp)(log(u)),

since (X —Y)/F|p=q = -T(1+Y)/T|p=g = —(1 + Y(P)). This finishes
the proof.
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