Dans cet article nous étudions le problème de Dirichlet pour l’opérateur biharmonique , dans un domaine borné lipschitzien quelconque dans , et nous donnons des bornes optimales. Nous démontrons des résultats d’existence et d’unicité quand les valeurs au bord ont des dérivées dans , et la dérivée normale appartient à . La solution qu’on obtient prend les valeurs au bord dans le sens de la convergence non-tangentielle, et la fonction maximale non-tangentielle de appartient à .
In this paper we study and give optimal estimates for the Dirichlet problem for the biharmonic operator , on an arbitrary bounded Lipschitz domain in . We establish existence and uniqueness results when the boundary values have first derivatives in , and the normal derivative is in . The resulting solution takes the boundary values in the sense of non-tangential convergence, and the non-tangential maximal function of is shown to be in .
@article{AIF_1986__36_3_109_0, author = {Dahlberg, Bj\"orn E. J. and Kenig, C. E. and Verchota, G. C.}, title = {The {Dirichlet} problem for the biharmonic equation in a {Lipschitz} domain}, journal = {Annales de l'Institut Fourier}, pages = {109--135}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {36}, number = {3}, year = {1986}, doi = {10.5802/aif.1062}, zbl = {0589.35040}, mrnumber = {88a:35070}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.1062/} }
TY - JOUR AU - Dahlberg, Björn E. J. AU - Kenig, C. E. AU - Verchota, G. C. TI - The Dirichlet problem for the biharmonic equation in a Lipschitz domain JO - Annales de l'Institut Fourier PY - 1986 SP - 109 EP - 135 VL - 36 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.1062/ DO - 10.5802/aif.1062 LA - en ID - AIF_1986__36_3_109_0 ER -
%0 Journal Article %A Dahlberg, Björn E. J. %A Kenig, C. E. %A Verchota, G. C. %T The Dirichlet problem for the biharmonic equation in a Lipschitz domain %J Annales de l'Institut Fourier %D 1986 %P 109-135 %V 36 %N 3 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.1062/ %R 10.5802/aif.1062 %G en %F AIF_1986__36_3_109_0
Dahlberg, Björn E. J.; Kenig, C. E.; Verchota, G. C. The Dirichlet problem for the biharmonic equation in a Lipschitz domain. Annales de l'Institut Fourier, Tome 36 (1986) no. 3, pp. 109-135. doi : 10.5802/aif.1062. https://aif.centre-mersenne.org/articles/10.5802/aif.1062/
[1] The Dirichlet problem for the biharmonic equation in a C1 domain in the plane, Indiana U. Math. J., Vol 32, 5 (1983), 635-685. | MR | Zbl
and ,[2] L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Annals of Math., 116 (1982), 361-387. | MR | Zbl
, and ,[3] Au delà des opérateurs pseudo-differentiels, Asterisque, 57 (1978). | MR | Zbl
and ,[4] A weighted norm inequality for singular integrals, Studia Math., 57 (1976), 97-101. | MR | Zbl
and ,[5] On estimates of harmonic measure, Arch. for Rational Mech. and Anal., 65 (1977), 272-288. | MR | Zbl
,[6] On the Poisson integral for Lipschitz and C1 domains, Studia Math., 66 (1979), 13-24. | MR | Zbl
,[7] Weighted norm inequalities for the Lusin area integral and the non-tangential maximal functions for functions harmonic in a Lipschitz domain, Studia Math., 67 (1980), 297-314. | MR | Zbl
,[8] Hardy spaces and the Lp Neumann problem for Laplace's equation in a Lipschitz domain, to appear in Annals of Math. | Zbl
and ,[9] Area integral estimate for higher order boundary value problems on Lipschitz domains, in preparation.
and ,[10] Hp space of several variables, Acta Math., 129 (1972), 137-193. | MR | Zbl
and ,[11] The dirichlet problem in non-smooth domains, Annals of Math., 113 (1981), 367-382. | MR | Zbl
and ,[12] The Neumann problem on Lipschitz domain, Bull AMS, Vol 4 (1981), 103-207. | MR | Zbl
and ,[13] Boundary value problems on Lipschitz domain, MAA Studies in Mathematics, vol 23, Studies in Partial differential Equations, W. Littmann, editor (1982), 1-68. | MR | Zbl
and ,[14] Recent progress on boundary values problems on Lipschitz domain, Proc. of Symp. in Pure Math., Vol 43 (1985), 175-205. | MR | Zbl
,[15] Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 192 (1974), 261-274. | MR | Zbl
,[16] Les méthodes directes en théorie des équations elliptiques, Academia, Prague, 1967.
,[17] On the theory of harmonic functions of several variables, I, Acta Math., 103 (1960), 25-62. | MR | Zbl
and ,[18] Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains, Thesis, University of Minnesota (1982), J. of Functional Analysis, 59 (1984), 572-611. | Zbl
,[19] The Dirichlet problem for biharmonic functions in C1 domains, preprint. | Zbl
,Cité par Sources :