À partir de l’étude de l’intégrabilité de la structure adjointe sur un groupe de Lie , on est amené à introduire l’algèbre de Lie des opérateurs symétriques du crochet de l’algèbre de Lie de . On fait apparaître une décomposition canonique de toute algèbre de Lie de centre nul en somme directe d’idéaux caractéristiques, où est somme de deux sous-algèbres abéliennes et où est formée d’opérateurs nilpotents.
Nous montrons que l’étude de la platitude à l’ordre 2 de la structure adjointe d’un groupe de Lie se ramène au cas où les opérateurs symétriques sont tous nilpotents.
The study of the integrability problem for the adjoint structure on a Lie group leads directly to that of the Lie algebra of symmetrical operators of the bracket in the Lie algebra of .
We point out a canonical splitting, for any Lie algebra without center, as a direct sum of characteristic ideals, where is a sum of two commutative sub-algebras and where is composed of nilpotent operators. We show that the two-order flatness study of adjoint structure on a Lie group, is reduced to the case where the symmetrical operators are all nilpotent.
@article{AIF_1982__32_1_139_0,
author = {Giraud, Georges},
title = {G\'eom\'etrie de la structure adjointe sur un groupe de {Lie} et alg\`ebres de type ${\mathcal {P}}_1$},
journal = {Annales de l'Institut Fourier},
pages = {139--156},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {32},
number = {1},
year = {1982},
doi = {10.5802/aif.864},
zbl = {0465.53033},
mrnumber = {83k:53051},
language = {fr},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.864/}
}
TY - JOUR
AU - Giraud, Georges
TI - Géométrie de la structure adjointe sur un groupe de Lie et algèbres de type ${\mathcal {P}}_1$
JO - Annales de l'Institut Fourier
PY - 1982
SP - 139
EP - 156
VL - 32
IS - 1
PB - Institut Fourier
PP - Grenoble
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.864/
DO - 10.5802/aif.864
LA - fr
ID - AIF_1982__32_1_139_0
ER -
%0 Journal Article
%A Giraud, Georges
%T Géométrie de la structure adjointe sur un groupe de Lie et algèbres de type ${\mathcal {P}}_1$
%J Annales de l'Institut Fourier
%D 1982
%P 139-156
%V 32
%N 1
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.864/
%R 10.5802/aif.864
%G fr
%F AIF_1982__32_1_139_0
Giraud, Georges. Géométrie de la structure adjointe sur un groupe de Lie et algèbres de type ${\mathcal {P}}_1$. Annales de l'Institut Fourier, Tome 32 (1982) no. 1, pp. 139-156. doi: 10.5802/aif.864
[1] , Introduction à l'étude des variétés lisses, Thèse, Montpellier, (1974).
[2] et , Théorème général d'équivalence pour les pseudo-groupes de Lie plats transitifs, J. of Diff. Geometry, (9) (1074), 347-354. | Zbl
[3] , Note aux C.R.A.S. t. 288 (23 avril 1979).
[4] et , Existence de certaines connexions plates invariantes sur les groupes de Lie, Ann. Inst. Fourier, Grenoble, XXVII, Fasc. 4 (1977), 233-245. | Zbl | MR | Numdam
[5] , The integrability problem for G-structures, Trans. of Amer. Math. Soc., 116 (1965), 544-560. | Zbl | MR
[6] , Lie algebras, Interscience Publishers, (1962). | Zbl
[7] , Sur quelques propriétés des G-structures, Journal of Diff. Geometry, (7) (1972), 489-518. | Zbl | MR
[8] , The integrability problem for pseudogroup structures, J. of Diff. Geometry, (9) (1974), 355-390. | Zbl | MR
[9] , The infinite groups of Lie and Cartan, J. Ann. Math., Jerusalem, 15 (1965), 1-114. | Zbl | MR
Cité par Sources :



