Un feuilletage d’une variété s’appelle transversalement homogène s’il peut être défini par des submersions locales prenant leurs valeurs dans un espace homogène telles que les changements des cartes sont des translations. Nous étudions la topologie et la géométrie de ces feuilletages et nous donnons un théorème de structure pour le cas où est compact. Nous considérons la relation entre les équations de structure de et l’espace fibré vectoriel transverse au feuilletage, et nous donnons une caractérisation au moyen des formes différentielles pour une grande classe des feuilletages homogènes. Enfin, nous étudions les feuilletages transversalement elliptiques, euclidiens, et hyperboliques.
A foliation of a manifold is transversely homogeneous if it can be defined by local submersions to a homogeneous space which on overlaps differ by translations. We explore the topology and geometry of such foliations and give a structure theorem for the case when is compact. We investigate the relationship between the structure equations of and the normal bundle of the foliation and provide a differential forms characterization of a large class of homogeneous foliations. As a special case, we study the transversely elliptic, Euclidean, and hyperbolic foliations.
@article{AIF_1979__29_4_143_0, author = {Blumenthal, Robert A.}, title = {Transversely homogeneous foliations}, journal = {Annales de l'Institut Fourier}, pages = {143--158}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {29}, number = {4}, year = {1979}, doi = {10.5802/aif.771}, mrnumber = {558593}, zbl = {0405.57016}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.771/} }
TY - JOUR AU - Blumenthal, Robert A. TI - Transversely homogeneous foliations JO - Annales de l'Institut Fourier PY - 1979 SP - 143 EP - 158 VL - 29 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.771/ DO - 10.5802/aif.771 LA - en ID - AIF_1979__29_4_143_0 ER -
Blumenthal, Robert A. Transversely homogeneous foliations. Annales de l'Institut Fourier, Tome 29 (1979) no. 4, pp. 143-158. doi : 10.5802/aif.771. https://aif.centre-mersenne.org/articles/10.5802/aif.771/
[1] The degree of polynomial growth of finitely generated nilpotent groups, Proc. London Math. Soc., (3), 25 (1972), 603-614. | MR | Zbl
,[2] Introduction to compact transformation groups, Academic Press, New York, 1972. | MR | Zbl
,[3] Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comm. Math. Helv., 32 (1958), 248-329. | MR | Zbl
,[4] Foundations of differential geometry, vol. I, Interscience Tracts in Pure and Appl. Math., 15, Interscience, New York, 1963. | Zbl
and ,[5] A global formulation of the Lie theory of transformation groups, Memoirs of the Amer. Math. Soc., 22 (1957). | MR | Zbl
,[6] Foliations with measure preserving holonomy, Ann. of Math., 102 (1975), 327-361. | MR | Zbl
,[7] Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (68), Springer-Verlag, Berlin, 1972. | MR | Zbl
,[8] Foliated manifolds with bundle-like metrics, Ann. of Math., (1), 69 (1959), 119-132. | MR | Zbl
,[9] A comprehensive introduction to differential geometry, vol. I, Publish or Perish, Boston, 1970. | Zbl
,[10] Free subgroups in linear groups, J. of Alg., 20 (1972), 250-270. | MR | Zbl
,[11] Growth of finitely generated solvable groups and curvature of Riemannian manifolds, J. of Diff. Geom., 2 (1968), 421-446. | MR | Zbl
,Cité par Sources :