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TRANSVERSELY HOMOGENEOUS FOLIATIONS

by Robert A. BLUMENTHAL

1. Introduction and statement of main results.

One way of defining a smooth codimension q foliation 8? °^ a manifold
M is by a smooth N^-cocyle {(U,,f^ap)}a,p6A where N4 is a smooth q-
dimensional manifold and

(i) {Uj^eA ls an OPen cover of M.
(ii) /„ : U, -> N4 is a smooth submersion whose level sets are the leaves of

S/u.
(hi) g^ : /p(U, n Up) -> /^U^ n Up) is a diffeomorphism satisfying

/ a = ^ p ° / p on U , n U p .

If N^ is a homogeneous space G/K (here G is a Lie group and K c: G is a
closed subgroup) and each g^ is (the restriction of) a G-translation of G/K,
then g is called a (transversely) homogeneous G/K-foliation.

Let us consider an important example due to Roussarie. Let

G = SL(2,R), K = \{ }: ac=l,a>(4, and let F be a uniform
X\b c; )

discrete subgroup of SL(2,R). The foliation of SL(2,R) whose leaves are the
left cosets of K induces on M = F\SL(2,R) a homogeneous
SL(2,R)/K ^ Spoliation g. Moreover, g is defined by a smooth nowhere

zero one-form co on M satisfying rfco = co A o)i, dw^ = .0)2 A co,

rico^ = co i A 0)2. Later in this paper we shall show that this set of equations
completely characterizes the homogeneous SL(2,R)/K ^ S^foliations.

Let G be a Lie group acting effectively on the connected homogeneous
space G/K and let g be a homogeneous G/K-foliation of a connected
manifold M.
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THEOREM 1. — To a homogeneous G/K-foliation <$ on M is associated a
homomorphism 0 : TCi(M) -*• G well-defined up to conjugation. Let F be its
image. The induced foliation $ on tne cover M of M associated to the kernel
of <I> f5 '̂i^n fc^ a r-equivariant submersion f : M -> G/K (F acting on M
fc^ covering transformations). The hononomy group of a leaf L of ^ is
isomorphic to the isotropy subgroup F^ of F at L, w^r^ L is a leaf of ^f
projecting to L. // M is compact (whence each leaf of 8' has a well-defined
growth type), the growth of L is dominated by the growth of the orbit F(x),
x = /(£). Thus, if 7ii(M) has non-exponential growth (respectively, polyno-
mial growth of degree d), then all the leaves of 5 have non-exponential growth
(respectively, polynomial growth of degree d).

See [3] for a more general statement of the first part of the theorem.

In Section 3 we provide a differential forms characterization of a large
class of homogeneous foliations. Let {81 , . . . ,6^_fc ,9^_j^ i , . . .,9^} be a
basis of the space of left-invariant one-forms on G such that
{ 6 ^ _ f c + i , . . .,9J- is a basis of the left-invariant one-forms on K. We then
have the structure equations of G relative to this basis :

d^i = Z ^jftj A 9 f » i = 1, .. .,m where c}j e R.
l^j<l^m

THEOREM 2. — If H1 (M ;K) is trivial, then the normal bundle of g- is trivial
and there exist m — k independent one-forms 04, . . . , co^_k 6 A^M) defining
8- and one-forms (o^_k+i , ' . . . , co^ e A1(M) satisfying

d(o^ = ^ ^ji^j A ̂  i = 1, .. . ,w.
Ky < « m

COROLLARY 1. — A codimension one foliation of M LS a homogeneous
SL(2,R)/K ^ S1 -foliation if and only if it is defined by a smooth nowhere zero

one-form coeA^M) satisfying dw = co A ©i, ^co^ = .0)2 A co,

^0)3 = Oi A 0)2 w^r^ 0)1, 0)2 eA^M).

In Section 4 we shall establish the following :

THEOREM 3. — If M and K are compact, then
i) The universal cover of M fibers over the universal cover of G/K, the

fibers being the leaves of the lifted foliation.
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ii) The closure of each leaf L e g is a submanifold of M (thus
5 = {L : L e 5} is a foliation, possibly with singularities) foliated by the
leaves of 9» thisfoliation being a homogeneous G'/K^-foliation where G' 15 a
Lie group and K^ is a compact subgroup of G ' .

iii) If G/K i5 compact with finite fundamental group (e.g., if G is a compact
semi-simple Lie group), then there exists a connected, open, dense, ̂ -saturated
submanifold of M which fibers over a connected Hausdorff manifold, the fibers
being the leaves of g. Moreover if L e g ;5 a compact leaf whose holonomy
group has non-exponential growth, then all the leaves of 5 have polynomial
growth.

COROLLARY 2. — If M and K are compact and if the universal cover
(G/K) of G/K is contractible, then the universal cover of M is a product
L x (G/K) where L is the (common) universal cover of the leaves of 5 an^
the leaves of the lifted foliation become identified with the sets L x {pi.}.
Furthermore, the inclusion of a leaf L (—»M induces a monomorphism
7Ci(L) -> 7Ti(M) between fundamental groups.

In Section 5 we study several particular types of homogeneous foliations
and the case where the leaves are one-dimensional. For instance, it is proved
that if g is a one-dimensional homogeneous SO(2q-\-l)/SO(2q) ̂  S24-
foliation of a compact manifold M, then 7ii(M) has polynomial growth of
degree ^ 1 and g has a compact leaf. If M3 is compact and n^(M3) is not
solvable, then M3 does not support a codimension 2 Euclidean (homoge-
neous SO (2)-R^SO (2)-) foliation.

2. Proof of Theorem 1.

Let {(U,,/^^)}^A be a G/K-cocycle defining g. Here g^eG and
\ denotes the diffeomorphism of G/K sending aK to g^aK. Let
P^{[^°/aL '' ^U,, aeA, geG}, where [^o/,L denotes the germ
°f \ °/a at x- By analyticity and the connectivity of G/K, P admits a
differentiable structure such that the natural projection K : P -> M is a
smooth regular covering with G as the group of covering transformations.
Let M be a connected component of P. The group of covering transforma-
tions of the covering K : M -> M is a subgroup r of G and is the image of a
homomorphism <S>: K^(M) -> G. The evaluation map / : M -> G/K is a
smooth r-equivariant submersion constant along the leaves of n~1 (5) • Let
L be a leaf of g and choose a leaf L of Ti'^g) which projects to L. Then
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TC/L : L -> L is a regular covering whose group of covering transformations,
namely F^, is isomorphic to the holonomy group of L. Note that the
holonomy group of L can be realized as a subgroup of K and that if a is a
loop in L which is homotopically trivial in M, then the element of
holonomy determined by a is trivial.

We now assume that M is compact. Let {U,Jp^}^=i be a finite G/K-
cocycle defining g" such that {Uj^i is a regular covering of M in the sense
of [6, pp. 336-337] and such that y^ e r for ij = 1, . . . , m. By a plaque
p c: Uf of the leaf L e g is meant a connected component of L n U. Fix
L e g and let p be a plaque of L. Without loss of generality, we may
assume that p c: U^ . For each i = 1, . . . , m, let v^(n) be the number of
distinct plaques in U^ which can be reached from the plaque p by a chain of
plaques of length ^ n. If g^ denotes the growth function of L at p with
respect to the regular covering {Uj^i , then gp(n) = v^(n) 4- . . . + v^(n),
neZ4 '^]. Let F1 c r be a finite symmetric generating set for r such that
jij e F1 for all ij = 1, . . . , m. Set z =/i(p)eG/K. We may assume that
F(z) is the orbit F(/(L)) where Len'1^) is a leaf projecting to L. The
growth function of F at z is g^(n) = ir^z)!, n e Z ^ where | | denotes
cardinality and F^z) = [ z ' e G/K : z' = ^. o . . . o X^(z) for some
Yi, . . . , y. e F1 where j < n}. Let T be a plaque of L in U^ which can be
reached from the plaque p by a chain of plaques of length ^ n. Let
(p = p^ p ^ , . . . , p^=r) be such a chain, I ^ n. For each k = 1, . . . , I
choose U,^ such that p^ c: U^, U,^ = U^ , U^ = U,. Then
5l, o . . . o ^ (z) =/.(T). Thus y.OOer^^z). If T' ^ T is another

'ilil-l ''21!

such plaque, then f^} ^^(r). Hence v^n)^^(n- l ) and so
^ (n) ^ mg^(n—l) which completes the proof of the theorem.

2.1. COROLLARY. - If G is nilpotent or if n^(M) is nilpotent then all the
leaves of g have polynomial growth. Moreover, the holonomy group of every
leaf is finitely generated and has polynomial growth.

Proof. - Since F is a finitely generated nilpotent group, it has
polynomial growth [I], [11] and hence all the leaves of g have polynomial
growth. Let L be a leaf of g and Len'1^) a leaf projecting to L. Since
F^ <= F is a subgroup of a finitely generated nilpotent group, we have that
F^ is finitely generated [7] and hence has polynomial growth.

2.2. COROLLARY. — If G is solvable and K^(M) has non-exponential
growth, then all the leaves of ® have polynomial growth.
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Proof. — Since F is a finitely generated solvable group with non-
exponential growth, it follows that F has polynomial growth [11].

2.3. COROLLARY. - If L e g is a lea/satisfying

i) [T^(M) : ^TCi(L)] < oo,
ii) The holonomy group of L has non-exponential growth (respectively,

polynomial growth of degree d),
then all the leaves of <$ have non-exponential growth (respectively, polynomial
growth of degree d).

Proof. - If LeTi'^g) is a leaf projecting to L, then we have
[r : r^] < oo. Hence F^ is finitely generated [1] and, by (ii), has non-
exponential growth (respectively, polynomial growth of degree d). Hence r
has non-exponential growth (respectively, polynomial growth of de-
gree d) [1].

3. Structure equations and the normal bundle.

The following is established using arguments similar to those found, e.g.,
in Chapter 10 of [9].

3.1. PROPOSITION. — Let 5 be a codimension m — k foliation of M
defined by m — k linearly independent one-forms co^, . .., co^_^ e A^M)
and suppose that there are also one-forms co^.^+i, . . ., co^ e A^M) such that

d^i = ^ c^Wj A co^, i = 1, . . ., m.
\^j<l^m

Then g is a homogeneous G/K-foliation.

We now prove Theorem 2. The canonical projection p : G -> G/K
makes G a smooth principal K-bundle over G/K. We may pull back this
bundle via / to obtain a smooth principal K-bundle p :/*(G) -> M where
/*(G) = {(y,g) e M x G :f(y)=p(g)} and p(y,g) = y . We also have a map
/ : /*(G) -^ G, defined by f(y,g) = g , such that p o/=/o p. Define a left
action of F on M x G by y(y,g) = (yy, yg) for yeF, (y,g)eM xG. This
action of r preserves /*(G) and thus defines a smooth left action of F on
/*(G) such that y o p = p o y for each y e F. Let F\/*(G) denote the space
of orbits and let T : /*(G) -> I"V*(G) be the natural projection. The map
p : /*(G) -> M induces a continuous surjection p : F\/*(G) -> M satis-
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fying p o T = 7i o p. Since the right action of K on /*(G) commutes with the
left action of F, there is a free right action of K on r\/*(G) such that
p : r\/*(G) -> M is a smooth principal K-bundle. We remark that F acts
freely and properly discontinuously on /*(G) and hence
T : /*(G) -> r\/*(G) is a smooth regular covering with F as the group of
covering transformations.

Now p of is a submersion, whence / is transverse to So (where So is
the foliation of G by the left cosets of K) and so J ~ 1 (So) ls a well-defined
foliationof/^G). The foliation So °^ G is defined by 9^, . . . , 9^_^ . and
hence P~l{^~l(<S))=f~l(<So) is defined by the m — k linearly independent
smooth one-forms 7*6i, .. .,/*9^_^ eAl(f*(G)) which satisfy

d(f^i) = E ^ (7*9,) A (/*9,), i = l , . . . , w.
1 </ < ̂  m

Note that Lyo^oy for each yeF where L^ : G -> G denotes
left translation by y. Now So an<^ 9^, • • • » ^ m are mvariant under
left translation by elements of F and hence /-1 (So) a^^O^, .. .,/*9^ are
invariant under the action of r on /*(G). Thus /-1 (So) projects to a well-
defined foliation 5 of r\/*(G) and 7*9i, .. .,7*9^ project to well-defined
smooth one-forms o^, . . . , a^ respectively such that 5 ls defined by the
m — k linearly independent smooth one-forms

which satisfy
^....^..eA^rV^G))

doii = ^ 4 a, A a^,
l ^< /^w

i = 1, .. . ,w. Note that S = P'^S). Since H^M;^ is trivial, there
exists a smooth section 5 : M -> r\f*(G). Now 5 is transverse to p'^S)
and 5~1 (p'^S)) = S »' hence, setting co^ = 5*a^ for i = 1, . . . , m, we see
that S ls defined by the m — k independent one-forms
(Oi, . . . , co^_k e A^M) which satisfy Ao, = ^ c^co, A co^,

1 </' < / ̂  m

i = 1, . .., m. In particular, the normal bundle of S ls trivial.

Noting that the two-dimensional affine group

K = { ^ ° ) ; ^ = l ^ > o l
(\b c ) }

is contractible, we see that Corollary 1 follows from Proposition (3.1) and
Theorem 2.
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3.2. COROLLARY. — Suppose G/K is a simply connected Riemannian
homogeneous space of constant curvature. Let g be a codimension m — k
foliation of M with trivial normal bundle. Then g is a homogeneous G/K-
foliation if and only if there exist m — k linearly independent one-forms
(QI, . . . , ^ni-k 6 A^M) defining g and one-forms o^.^i, . . . , co^ e A^M)

satisfying rfo, == ^ c^o)y A coj, f = 1, . . . , m.
l< /< /^m

Proo/ — If g ls defined by such one-forms, then 5 is a homogeneous
G/K-foliation by Proposition (3.1). If g- is a homogeneous G/K-foliation,
then the metric on G/K induces a smooth Riemannian metric on the normal
bundle of g. The hypothesis on G/K implies that K is the full orthogonal
group 0(m—k) and hence the principal K-bundle p : r\f*(G) —> M
constructed in the proof of the theorem is just the bundle of orthonormal
frames of the normal bundle of <?. The conclusion now follows from the
triviality of this principal K-bundle.

3.3. COROLLARY. — Let 'S be a codimension two foliation of M with trivial
normal bundle. Then

a) ($ is transversely Euclidean (homogeneous SO (2)'R2/SO (2)) if and
only if it is defined by independent one-forms o^, 0)^ satisfying

Ao^ = -CD^ A 0)3, AO^ = — -COi A 0)3, rfo)3 = 0.

b) ($ is transversely hyperbolic (homogeneous SL(2,R)/SO(2)) if and only

if it is defined by independent one-forms co^, 0)3 satisfying dw^ = -o^ A 0)3,

Ao^ = 0)1 A 0)2 — 2o)i A 0)3, ^0)3 = — o)i A 0)3.

c) 3 is transversely elliptic (homogeneous SO(3)/SO(2)) if and only if it is
1

defined by independent one-forms o^, 0)3 satisfying Ai)i = -o^ A 0)3,

^0)^ = — -0)^ A 0)3, ^0)3 = -Oi A 0)2.

3.4. COROLLARY. — Let 'S be a codimension q foliation of M with trivial
normal bundle. Then 3' ls transversely affine (homogeneous
GL(q,R)'Rq/GL(q,R)) if and only if there exist q = m — k independent one-
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forms o)i, . . . , (o^_fc eA^M) defining 5 (w^^ k = ^2) an^ one-forms
co^_fc+i , . . . , co^ e A^M) satisfying

AOf = ^ c^ A o^, i = 1, . . . , m.
1</'</^W

Proof. — If 5 is transversely affine, then the principal K-bundle
p : r\/*(G) -> M is just the bundle of frames of the normal bundle of 8-.

4. Riemannian homogeneous foliations.

Throughout this section we assume that M and K are compact. Pick
and fix a G-invariant Riemannian metric on G/K.

4.1. THEOREM. — The universal cover of M fibers over the universal cover of
G/K, the fibers being the leaves of the lifted foliation.

Proof. - Let n : M -> M and / : M -^ G/K be as in Theorem 1. Let M
be the universal cover of M and choose a covering map TC' : M -> M. Let
§ be the foliation of M obtained by lifting g" via TC o n' and let
f = f o 7t'. Then / is a submersion defining §. Let E c= T(M) be the
bundle tangent to the leaves of 5. Choose a subbundle Q c= T(M) such
that T(M) = E © Q. If {(U^,X^)}^ is a G/K-cocycle defining g,
then Q inherits a smooth Riemannian metric by the requirement that
/a, : Qx ~" T/ (^)(G/K) , x e UQ( be a vector space isometry. Choose a
Riemannian metric on E and define a Riemannian metric on M by the
requirement that E^ is orthogonal to Q^ for all x e M. Then this metric on
the foliated manifold (M,8") is bundle-like in the sense of [8]. Moreover, since
M is compact, this bundle-like metric is complete.

The complete bundle-like metric on M lifts via n o n' to a complete
bundle-like metric on the foliated manifold (M,§) • But § is regular since it
is defined by a global submersion. Hence, by Corollary 3 in [8], the space of
leaves M/§ of § is a complete, Riemannian, Hausdorff manifold and the
natural projection M -> M/g is a fibration. Since M is simply connected, it
follows that M/§ is simply connected. Now / induces a local isometry
M/g -^ G/K which lifts to a local isometry M/§ -^ (G^K) where (G/K)
denotes the simply connected Riemannian cover of G/K. Hence M/§ and
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(G/K) are isometric [4] since each is a connected, simply connected,
complete, analytic, Riemannian manifold.

Remark. — Corollary 2 is an immediate consequence of Theorem (4.1). If
we do not assume that (G/K) is contractible, but only that TT^G^K) = 0,
then the leaves of § are simply connected and we still have, that
i^ : 7ii(L) -> 7ti(M) is injective for all L e g .

4.2. COROLLARY. — Suppose the universal cover of G/K is contractible.

i) If dim g = 1, then M is contractible.
ii) If dim 5 = 2, then either M is contractible or has the homotopy type of

S2. In the latter case, all the leaves of g are compact with universal cover S2.

We adopt the following notation for the rest of this section and the next.
Let N denote the connected Riemannian manifold G/K. Thus G is a
transitive group of isometries of N. Let N be the universal cover of N
endowed with the Riemannian metric lifted from N and let Q be the full
group of isometries of N. Then G acts transitively on N. Theorem (4.1)
tells us that we have a fibration p : M -> M/§ ^ N. Let 7Ci(M) denote the
group of covering transformations of M. Each element T e K^ (M) induces
an isometry \|/(T) : M/§ -> M/§. We regard \|/(T) as an isometry of N.
Hence \|/(T) e G and we have a homomorphism \|/ : 7i^(M) —> Q. Let
S = image v)/ c: Q. For x e N, let 2^ = {o e £ :a(x) = x} and
S(x) = {o(x) : a e £}. Let L e g and choose a leaf L' e g which projects
to L. Then the orbit £(x) of x = p(L') under S depends only on L and
we denote this orbit by ^L. The following lemma is elementary.

4.3. LEMMA. — Let L be a leaf of g. Then

i) L is proper (i.e., L 15 an imbedded submanifold of M) if and only if ^L is
a discrete subset of N.

ii) L is compact if and only if ^L is discrete and closed.
in) L is dense if and only if ^L is dense.
iv) The space of leaves of g 15 homeomorphic to the orbit space £ \N.
v) Let £ denote the closure of £ in Q. Then for x e N, we have

S(x) = 2(x); that is, the orbit of x under £ 15 the closure of the orbit of x
under S.

4.4. THEOREM. — Let L e g - Then L 15 a submanifold of M and the
foliation of L by the leaves of g- 15 a homogeneous G'/K^-foliation where G'
is a closed subgroup of G and K^ is a compact subgroup of G ' .
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Proof. — Let n : M -> M be the universal cover of M. We have a
fibration p : M -^ 5J whose fibers are the leaves of § = Ti"1^). Choose a
leaf L' c: Tt'^L) and let x = p(L')eK. Then

n-^L) = TT-^L) = p-^M) = p-^SM) = p-^Hx))

and so we have a fibration p/jc'^L) ^'^(L) -+ £(x). Now £(x) is the orbit
of x under the action of the Lie group £ and hence is a submanifold of N
from which it follows that TT'^L) is a submanifold of M. Hence L is a
submanifold of M.

It remains to demonstrate that the foliation of L by the leaves of 5
is a homogeneous foliation. Now TI/TC'^L) : Tr'^L)-^!. is a regular
covering and p/Ti'^L) : Tt'^L) -> £(x) is a submersion defining
^/TI'^L) = Ti'^g'/L). Moreover, for each covering transformation T of
TT-^L) we have (v|/(r)/£(x)) o (p/rc-^L)) = (p/Ti-^L)) o (T/TI-^L)). Hence
there exists a £(x)-cocycle {(Ua,/a,(Tap)}^pgA defining 5/L such that
(7,p e £ c £ for all a, P e A. But £(x) inherits a Riemannian metric from
S and v|/(T)/£(x) : £(x) -^ £(x) is an isometry. Moreover, £ acts transi-
tively on £(x) and so £(x) ^ £/KL where K^ is a compact subgroup of
£. Taking G' = £, we have that 8-/L ls a homogeneous G'/KL-foliation.

Remark. — Since {£(x) : x e N} : {£(x) : x e S} partitions S, we see
that {L : L e 5} partitions M and hence 5 = {L : L e 5} is a foliation of
M, possibly with singularities.

4.5. THEOREM. — If S is compact (i.e., if N = G/K is compact mth finite
fundamental group), there exists a connected, open, dense, ̂ f-saturated submani'
fold V of M which fibers over a connected Hausdorff manifold, the fibers being
the leaves of 5- Thus, in particular, the leaves of ^ contained in V are
mutually dijfeomorphic.

Proof. — Since S is compact, it follows that G is compact. Thus £ is a
compact Lie group acting smoothly on N. Let W c= S be the union of the
principal orbits [2]. Then W is an open, dense, saturated subset of N and
£\W is a connected Hausdorff manifold [2]. Let V = ^(p'^W)) c M.
Then V is an open, dense, ^-saturated submanifold of M. We have a
smooth submersion V -> £ \W defining 5/V and hence ^/V is a regular
foliation of V with all leaves compact. Thus V -> £ \W = V/§ is a fibration
[5], the fibers being the leaves of S/V. In particular, V is connected.
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4.6. THEOREM. - Suppose (G/K) is compact and that L e g is a compact
leaf. If the holonomy group of L has non-exponential growth (respectively,
polynomial growth of degree d), then all the leaves of g have polynomial
growth (respectively, polynomial growth of degree d). If the fundamental group
of L has non-exponential growth (respectively, polynomial growth of degree
d), then 7ii(M) has non-exponential growth (respectively, polynomial growth
of degree d) and all the leaves of g have polynomial growth (respectively,
polynomial growth of degree d).

Proof. - Since L is compact we have that E1- is discrete and closed,
hence finite. Thus TI'^L) is a finite union of leaves. Let L' be a leaf of §
which projects to L and let n^(M)^ = {xen^(M) ̂ (L^L'}. Then the
index of ^(M)^ in TT^M) is finite and hence [7ii(M) :^7ii(L)] < oo. The
holonomy group of L is isomorphic to the linear holonomy group of L and
hence is a finitely generated linear group with non-exponential growth, hence
polynomial growth [10] (respectively, polynomial growth of degree d).
Hence, by Corollary (2.3), all the leaves of g have polynomial growth
(respectively, polynomial growth of degree d). If TT^L) has non-exponential
growth (respectively, polynomial growth of degree d), then so does i^ (L).
Since [7ii(M) : ^Tii(L)] < oo, it follows from [1] that ^(M) has non-
exponential growth (respectively, polynomial growth of degree d).

Combining Theorems (4.1), (4.4), (4.5) and (4.6), we obtain Theorem 3.

4.7. PROPOSITION. - If 7ii(L) is finite for some leaf L e g , then all the
leaves of g are compact. I fan addition (G/K) is compact, then K^(M) is finite.

Proof. - Let n : M -> M be the universal cover of M and let TI'^L)^
be a connected component of TT'^L). Then TT/TC'^L^ : Tt'^L^ -^ L is a
covering of L. Since L is compact with finite fundamental group, it follows
that TC'^L^ is compact. Let L' be a leaf of § contained in TI'^L^. Then
L' is a closed subset of the compact space n'^L^ and hence L' is
compact. Thus all the leaves of § are compact and so all the leaves of g are
compact. If in addition N is compact, then n : M -» N is a fibration with
compact base and compact fiber. Thus M is compact and so n^(M) is finite.

5. Elliptic, Euclidean, and hyperbolic foliations.

Throughout this section M denotes a closed manifold.
5.1. PROPOSITION. - Let g be a one-dimensional homogeneous

SO(2q-^l)/SO(2q)^S2q-foliation of M. Then n,(M) has polynomial
growth of degree d ^ 1 and g has a compact leaf.
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Proof. — Suppose that no leaf of g- is compact. Then all the leaves of g-
are simply connected and hence ^Tti(L) is trivial for all L e g . Let
T e TCi (M). Then, since \|/(r) : S24 -»- S24 has a fixed point, there exists a leaf
L ' e g such that T(L') = L'. If L = 7 c ( L ' ) e g , we have
T e 7ii(M)L' = {[ien^(M) : (i(L') = L'} ^ ^i(L) and hence T is the identity
covering transformation and so M is simply connected. Thus M fibers over
S2^, the fibers being the leaves of g" • But this implies that all the leaves of g-
are circles which is impossible. Hence there exists a compact leaf L e ®.
Since the fundamental group of L has polynomial growth of degree 1, it
follows from Theorem (4.6) that 7ii(M) has polynomial growth of degree
d ^ 1.

5.2. PROPOSITION. — Let 8' be a codimension two elliptic foliation of M.
Then either

i) all the leaves of g ^r^ compact,
ii) all the leaves of 3" clre dense, or
in) all the leaves of g have polynomial growth and there exists a compact

leaf.

Proof. - In this case N = N = S2, Q = S0(3) and so we have
v|/ :7ii(M) -> S0(3) with image £ c: S0(3). Thus £ is a compact Lie
group and hence has only finitely many connected components. Let (£)o be
the connected component of the identity. Then (£)o is a compact connected
Lie group and [£ : (£)o] < oo. Let Zo = ^ n (^)o • Then ZQ ls a

subgroup of £ and [S : So] < oo. Hence, by [I], £o is finitely generated
and has the same growth type as Z. We consider four cases :

a) (£)o is zero-dimensional : Then Z is discrete and hence finite. Thus
S(x) is finite for all x e S2 and so all the leaves of g are compact by
Lemma (4.3).

b) (£)o is one-dimensional :Then (2)o is isomorphic to S1 and so Zo is
(finitely generated) abelian. Hence Z has polynomial growth. Thus, by
arguments identical to those used to establish Theorem 1, all the leaves of 3-
have polynomial growth. Now Zo is not trivial for otherwise (2)o would be
zero-dimensional. Choose a non-identity element A e So. Then A has
exactly two fixed points x, y G S2. If B e Eo ls nontrivial, then
ABx = BAx = Bx and ABy = BAy = By. Hence either Bx = x and
By = y or else Bx = y and B^ = x . Either way, the orbit of x under Eo
is finite. Thus Z(x) is finite and so 8- has a compact leaf.
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c) (£)o is two-dimensional : Then (£)o is isomorphic to the two-
dimensional torus which is impossible.

d) (£)o is three-dimensional : Then (S)o = SO (3) and so £ is dense in
S0(3). Hence £(x) is dense in S2 for all x e S2 and so all the leaves of <$
are dense.

5.3. PROPOSITION. — Let 5 be a codimension two Euclidean, elliptic or
hyperbolic foliation of M. / / L e g is a compact leaf with H^L) = 0, then
all the leaves of g are compact. If L e g fs a (nor necessarily compact) leaf
with H^(L,Z) = 0, t/i^n i^n^(L) is a normal subgroup of n^(M).

Proof. — Let Leg" and choose a leaf L' e § which projects to L. Let
x = p(L')eN. Since 2^ is abelian, the composition

^i (L) -^ f^i(L) ^ 7^(M)^ -^ £,

induces a surjection H^(L,Z) -> 2^. Suppose L is compact. Then £(x)= ^L

is discrete and closed. If H^L) = 0, then Hi(L,Z) is finite and so £^ is
finite. Thus £ is a discrete subgroup of Q and hence £(x) is discrete and
closed for all x e ?J [4]. Thus all the leaves of g are compact. If
H^(L,Z) = 0, then 2^ is trivial and hence n^(M)^ = kernel v|/. Thus
f^7ii(L) is normal in K^(M).

5.4. PROPOSITION. — Let 3- be a codimension two Euclidean or hyperbolic
foliation of M. If i^n^(Lo) is trivial for some leaf Lo^g , then the
fundamental group of every leaf is abelian.

Proof. — Choose a leaf L'o c ic'^Lo). Then

kernel \|/ c n^M)^ ^ ^i(Lo)

and hence v|/ is injective. Let Leg . Choose L' c= jt'^L) and let
z = p(L')eN. Since ^(S) = 0 we know that i^ : n^(L) -> K^(M) is one-
one and so v|/ o ^ maps 7Ci(L) isomorphically onto £^. ButE^ c= { g e Q :
g(z)=z} ^ S0(2)andso £^ is abelian.

5.5. PROPOSITION. — Suppose Q is solvable. If ® contains a leaf whose
fundamental group is solvable, then 7ii(M) 15 solvable. Thus if Q is solvable
and dim 5 = 1, then ni(M) is solvable.
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Proof. — Suppose Leg? is such that n^(L) is solvable. Then i^n^(L) is
solvable. Choose a leaf L' e § which projects to L. Then we have
kernel v|/ c n^(M)^- ^ ^7Ci(L) and hence kernel v|/ is solvable. But
7ii(M)/kernel v|/ ^ £ is solvable since £ <= G. Thus 7ii(M) is solvable.

5.6. COROLLARY. — If n^(M3) is not solvable, then M3 does not support a
codimension two Euclidean foliation.

5.7. PROPOSITION. - If Hi(M,Z) = 0, then M does not support a
codimension two Euclidean foliation.

Proof. — If 3 is a codimension two Euclidean foliation of M, then we
have v|/ : n^(M) -> Q = SO(2).R2. Let h : SO(2)'R2 -^ S0(2) be the
projection. Since H^(M,Z) = 0 and SO (2) is abelian, it follows that h o \|/
is the trivial homomorphism. Thus if xen^(M), then v|/(T) is a translation
of R2 and hence 8- i5 a Lie R^foliation. Thus g" 1s defined by two linearly
independent closed one-forms and hence, since H^M) = 0, there exists a
submersion M -> R2 defining ^ which is impossible.

5.8. PROPOSITION. — Let ^ be a codimension two Euclidean foliation of
M. If all the leaves of g- are simply connected, then g l5 a Lie R2-foliation
and TC^(M) 15 abelian.

Proof. — Let ae£. Suppose <r(x) = x for some x e R 2 . Choose
T e 7ti(M) such that v|/(r) = o and let L' e 3- be a leaf such that
p(L') = x. Then r(L') = L'. Setting L=7 i (L ' ) eg , we have that
TGTC^M)^ ^ ^Tii(L). Since L is simply connected, it follows that T, and
hence a, is the identity transformation. Thus £ acts freely on R2 and so £
is a group of translations. Hence 5 is a Lie R^foliation. Finally,
v|/ : 7ti(M) -^ £ is an isomorphism and so 7Ci(M) is abelian.

5.9. COROLLARY. — Let "Q be a codimension two Euclidean foliation of the
3-manifold M.

i) // 7ti(M) 15 not abelian, then g' n^ a compact leaf.
ii) // 5 ls n0^ a Lie R2-foliation, then 5 /ia5 a compact leaf.

5.10. PROPOSITION. — Let 9 be a codimension two Euclidean foliation of
M OM^ suppose that 7ti(M) 15 abelian. Then either

i) 9 l5 a ̂  R2-foliation, or
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ii) g has a compact leaf L such that ^ : K^(L) -> n^M) is an
isomorphism.

Proof. - Since ^(M) is abelian, we have that £ is abelian. Hence all the
non-identity elements of £ have the same fixed point set Z. Either Z is
empty or Z has one element. If Z is empty, then £ is a group of translations
and so g is a Lie Probation. Suppose Z = {x}, x e R2 . Let L' e § be a
leaf such that p(L') = x and let L = Ti(L') e g. Then £1- = £(x) = {x}
and hence L is compact. Let TGTC^M) . Then, since v|/(r)(x) = x, we must
have that T(L') = L'. Thus -cen^M)^ and so

^i(L) ^ 7Ti(M)^ =7ii(M).

5.11. COROLLARY. —Let 5 be a codimension two Euclidean foliation of M
where M 15 a 3-manifold with 7ii(M) abelian, n^(M) ^ Z. 77u?n g fsnLi£?
R^/o^rion.

Pyw/: - If not, then g has a compact leaf L such that
i^ :7ti(L) -^ 7ti(M) is an isomorphism. Since g is one-dimensional, we have
that L ^ S1 and hence n^M) = Z, a contradiction.

5.12. COROLLARY. — Let 5 be a codimension two Euclidean foliation of M
where M 15 an orientable 4-manifold with n^(M) abelian, K^(M) ^ Z x Z.
Then <$ is a Lie R2-foliation.

Proof. - If not, then g has a compact leaf L such that
i^ :Hi(L) -> 7ii(M) is an isomorphism. Since M is orientable and g is
transversely orientable, we have that the leaves of g are orientable. Thus L
is a compact orientable surface. If the genus of L is one, then
7ii(M) = Z x Z, contrary to assumption. If the genus of L is greater than
one, then n^(M) is not abelian, contrary to assumption. If the genus of L is
zero, then M is simply connected and hence doesn't support a codimension
two Euclidean foliation.

5.13. PROPOSITION. -Ifn^(M) has non-exponential growth, then M does
not support a codimension two hyperbolic foliation.

Proof. - In this case G = SL(2,R) and we have v|/ : TT^M) -> SL(2,R)
with image v|/ = £ c: SL(2,R). By Lemma (4.3), £\N is compact and
hence £\G is compact. Thus £\SL(2,R) is compact which is impossible
since £ has non-exponential growth.
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