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TRANSVERSELY HOMOGENEOUS FOLIATIONS

by Robert A. BLUMENTHAL

1. Introduction and statement of main results.

One way of defining a smooth codimension ¢ foliation & of a manifold
M is by a smooth N%cocyle {(U,f,gup)}apa Where N? is a smooth g-
dimensional manifold and

() {U,}uea is an open cover of M.

(i1) £, : U, > N? is a smooth submersion whose level sets are the leaves of
&/U,
(ii)) g,p: fp(U, N Up) — f,(U, n Up) is a diffeomorphism satisfying

Jo =9 °Sp on U, n Uy.

If N9 isa homogeneous space G/K (here G isaLiegroupand K < G isa
closed subgroup) and each g, is (the restriction of) a G-translation of G/K,
then & is called a (transversely) homogeneous G/K-foliation.

Let us consider an important example due to Roussarie. Let

0
G =SL(2R), K = {(Z ): ac=1,a>0}, and let T" be a uniform
c

‘

discrete subgroup of SL(2,R). The foliation of SL(2,R) whose leaves are the
left cosets of K induces on M = I'SL(2,R) a homogeneous
SL(2,R)/K = S'-foliation &. Moreover, § is defined by a smooth nowhere

. 1
zero one-form ® on M satisfying do =0 A ©,, do, = 50)2 A O,

do, = o; A ®,. Later in this paper we shall show that this set of equations
completely characterizes the homogeneous SL(2,R)/K = S'-foliations.

Let G be a Lie group acting effectively on the connected homogeneous
space G/K and let § be a homogeneous G/K-foliation of a connected
manifold M.
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THEOREM 1. — To a homogeneous G/K-foliation & on M is associated a
homomorphism ® :n,(M) - G well-defined up to conjugation. Let T be its
image. The induced foliation & on the cover M of M associated to the kernel
of ® is given by a I'-equivariant submersion f : M — G/K (I' acting on M
by covering transformations). The hononomy group of a leaf L of & is
isomorphic to the isotropy subgroup Ty of T at L, where L is aleaf of &
projecting to L. If M is compact (whence each leaf of & has a well-defined
growth type), the growth of L is dominated by the growth of the orbit I'(x),
x = f(L). Thus, if n,(M) has non-exponential growth (respectively, polyno-
mial growth of degree d), then all the leaves of & have non-exponential growth
(respectively, polynomial growth of degree d).

See [3] for a more general statement of the first part of the theorem.

In Section 3 we provide a differential forms characterization of a large

class of homogeneous foliations. Let {6,,...,0,_4,0n_xs1,---,0m} be a
basis of the space of left-invariant one-forms on G such that
{8p_r+1s---,0n is a basis of the left-invariant one-forms on K. We then

have the structure equations of G relative to this basis :

e, = Y ¢y, A0, i=1,...,m where c;eR.

1<j<i<m

THEOREM 2. — If HY(M ;K) is trivial, then the normal bundle of & is trivial
and there exist m — k independent one-forms oy, . .., ®, _, € A'(M) defining
& and one-forms ®,_y.1," - ., ®, € A}(M) satisfying

do,= Y co,Aw, i=1,...,m.

1gj<i<sm

COROLLARY 1. — A codimension one foliation of M is a homogeneous

SL(2,R)/K = S! -foliation if and only if it is defined by a smooth nowhere zero
1

one-form e A'(M) satisfying do = o0 A ©,, do, = 302 A O,

do, = ®; A ®, where ®;, ®, € A'(M).
In Section 4 we shall establish the following :

THEOREM 3. — If M and K are compact, then

i) The universal cover of M fibers over the universal cover of G/K, the
fibers being the leaves of the lifted foliation.
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ii) The closure of each leaf Le & is a submanifold of M (thus
& ={L:L € &} is a foliation, possibly with singularities) foliated by the
leaves of &, this foliation being a homogeneous G'/K-foliation where G’ isa
Lie group and K; is a compact subgroup of G'.

iii) If G/K is compact with finite fundamental group (e.g.,if G is a compact
semi-simple Lie group), then there exists a connected, open, dense, §-saturated
submanifold of M which fibers over a connected Hausdorff manifold, the fibers
being the leaves of &. Moreover if L € § is a compact leaf whose holonomy
group has non-exponential growth, then all the leaves of § have polynomial
growth.

’_\SOROLLARY 2. — If M and K are compact and if the universal cover
(G/K) of G/K is contractible, then the universal cover of M is a product
L x (G/K) where L is the (common) universal cover of the leaves of & and
the leaves of the lifted foliation become identified with the sets L x {pt.}.
Furthermore, the inclusion of a leaf L == M induces a monomorphism
7, (L) - n, (M) between fundamental groups.

In Section 5 we study several particular types of homogeneous foliations
and the case where the leaves are one-dimensional. For instance, it is proved
that if § is a one-dimensional homogeneous SO(2g+1)/SO(2g) = S%4-
foliation of a compact manifold M, then n,(M) has polynomial growth of
degree < 1 and & hasacompact leaf. If M? is compact and =, (M?) is not
solvable, then M? does not support a codimension 2 Euclidean (homoge-
neous SO(2)-R?/SO(2) - ) foliation.

2. Proof of Theorem 1.

Let {(U, fm,kgma)}o“isA be a G/K-cocycle defining §. Here g,, € G and
)\'\tu denotes the diffecomorphism of G/K sending aK to g,,aK. Let
P={[A,of,], : xeU,, acA, geG}, where [A of,], denotes the germ
of A, of, at x. By analyticity and the connectivity of G/K, P admits a
differentiable structure such that the natural projection n:P - M is a
smooth regular covering with G as the group of covering transformations.
Let M be a connected component of P. The group of covering transforma-
tions of the covering ©n : M — M isasubgroup I' of G and is theimage of a
homomorphism ® : n,(M) - G. The evaluation map f:M - G/K isa
smooth I'-equivariant submersion constant along the leaves of n~ (). Let

L be a leafof & and choose aleaf L of n~!(F) which projectsto L. Then
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n/L : L - L isaregular covering whose group of covering transformations,
namely I't, is isomorphic to the holonomy group of L. Note that the
holonomy group of L can be realized as a subgroup of K and thatif ¢ isa
loop in L which is homotopically trivial in M, then the element of
holonomy determined by o is trivial.

We now assume that M is compact. Let {U,f, XYU =1 beafinite G/K-
cocycle defining & suchthat {U,}", isaregular coveringof M in the sense
of [6, pp. 336-337] and such that v;;eT for i,j = 1,...,m. By a plaque
p < U; of the leaf L € § is meant a connected component of L n U;. Fix
Le & and let p be a plaque of L. Without loss of generality, we may
assume that p < U;. Foreach i =1,...,m, let v,(n) be the number of
distinct plaques in U, which can be reached from the plaque p by a chain of
plaques of length < n. If g, denotes the growth function of L at p with
respect to the regular covering {U;}/L,, then g,(n) = v,(n) + ... + v,(n),
neZ* [6]. Let I'' = I' be a finite symmetric generating set for I' such that
vy €Tt forall i,j =1,...,m. Set z = f,(p) e G/K. We may assume that
I'(z) is the orbit T'(f(L)) where L e n~(&) is a leaf projecting to L. The
growth function of ' at z is g,(n) = [I"(2)}, ne Z* where | | denotes
cardinality and I"(z) ={zZeG/K:Z = kyj °o...ok,(2) for some
Y1, .., ¥; € I'' where j < n}. Let © beaplaqueof L in U; which can be
reached from the plaque p by a chain of plaques of length < n. Let
(p = p1,P2---»P1=T) be such a chain, | <n. For each k=1,...,!
choose U, such that p,<U,, U, =U;, U,=U;. Then

Vg, o ° Ayizil(z) = f(t). Thus f,(t)eI™ }(z). If v # 1 is another
such plaque, then f(t') # fi(t). Hence v;n) <g,(n—1) and so
g,(n) < mg,(n—1) which completes the proof of the theorem.

2.1. CoroLLARY. — If G is nilpotent or if m,(M) is nilpotent then all the
leaves of § have polynomial growth. Moreover, the holonomy group of every
leaf is finitely generated and has polynomial growth.

Proof. — Since I is a finitely generated nilpotent group, it has
polynomial growth [1], [11] and hence all the leaves of § have polynomial
growth. Let L be aleafof § and L en Y(®) aleaf projectingto L. Since
I't = T is a subgroup of a finitely generated nilpotent group, we have that
I'; is finitely generated [7] and hence has polynomial growth.

2.2. CoroLLARY. — If G is solvable and m,(M) has non-exponential
growth, then all the leaves of § have polynomial growth.
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Proof. — Since I' is a finitely generated solvable group with non-
exponential growth, it follows that I' has polynomial growth [11].

2.3. CoroLLARY. — If L €& is a leaf satisfying

) [t,M) : iy, (L)] < o,

ii) The holonomy group of L has non-exponential growth (respectively,
polynomial growth of degree d),

then all the leaves of & have non-exponential growth (respectively, polynomial
growth of degree d).

Proof. — If Len (&) is a leaf projecting to L, then we have
[T:T;] < . Hence I is finitely generated [1] and, by (ii), has non-
exponential growth (respectively, polynomial growth of degree d). Hence I
has non-exponential growth (respectively, polynomial growth of de-
gree d)[1].

3. Structure equations and the normal bundle.

The following is established using arguments similar to those found, e.g.,
in Chapter 10 of [9].

3.1. PropPOSITION. — Let & be a codimension m — k foliation of M
defined by m — k linearly independent one-forms ., ...,®,_, € A'(M)
and suppose that there are also one-forms @, _, , 1, . . ., ®,, € A*(M) such that

do, = Z cho; Aoy, i=1,...,m.

1€j<i<m
Then § is a homogeneous G/K-foliation.

We now prove Theorem 2. The canonical projection p:G — G/K
makes G a smooth principal K-bundle over G/K. We may pull back this
bundle via f to obtain a smooth principal K-bundle p :f*(G) - M where
/*(G) = {(1.9) e Mx G :f(y)=p(9)} and p(y.g) = y. We also have a map
[ f¥(G) - G, defined by f(y,g) = g, such that pof=fop. Define a left
actionof T on M x G by v(y,g) = (yy,vg) for yeI', (y,9)€ M x G. This
action of I' preserves f*(G) and thus defines a smooth left action of I' on
f*(G) suchthat yop = p oy foreach yeI'. Let I'\f*(G) denote the space
of orbits and let t : f*(G) —» I'\f*(G) be the natural projection. The map
p : f*(G) - M induces a continuous surjection p : I'\f*(G) - M satis-
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fying p ot = m o p. Since the right action of K on f*(G) commutes with the
left action of I', there is a free right action of K on I'\f*(G) such that
p : I\f*(G) - M is a smooth principal K-bundle. We remark that I" acts
freely and properly discontinuously on f*G) and hence
T : f¥G) » I'f*QG) is a smooth regular covering with I' as the group of
covering transformations.

Now p of is a submersion, whence f is transverse to &, (where &, is
the foliation of G by the left cosets of K) and so f~!(&,) is a well-defined
foliation of f*(G). The foliation &, of G is defined by 0,, ...,8,,_, and
hence p (X)) =F '(&,) is defined by the m —k linearly independent
smooth one-forms f*0,, ...,7*0,,_, € A'(f*(G)) which satisfy

d(f*e) = 1 ZI i (f*6) A (f*6),i=1,...,m.
gj<lsm

Note that L,ofoy for each yel' where L,: G —> G denotes
left translation by y. Now &, and 0,,...,0, are invariant under
left translation by elements of I' and hence f~*(§,) and f*0,, ...,f*0,, are
invariant under the action of I' on f*(G). Thus f~}(&,) projects to a well-
defined foliation § of I'\f/*(G) and f*8,, ...,/*0, project to well-defined
smooth one-forms «a, ..., a, respectively such that § is defined by the
m — k linearly independent smooth one-forms

oy v ey Oy € AHT\S*(G))
which  satisfy )
dy, = Y choy A ay,

1€j<i<m

i=1,...,m. Note that F = p~1(F). Since H!(M;K) is trivial, there
exists a smooth section s : M — I'\f*(G). Now s is transverse to p~ ()
and s~ ! (p~ () = & ; hence, setting ®; = s*a; for i = 1, ..., m, we see
that § is defined by the m —k independent one-forms
@y, ..., Op_y € AY(M) which  satisfy do, = ) co; A o,

1gj<lsm

i =1, ...,m. In particular, the normal bundle of & is trivial.

Noting that the two-dimensional affine group

a O
K={< ):ac=1,a>0}
b ¢

is contractible, we see that Corollary 1 follows from Proposition (3.1) and
Theorem 2.
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3.2. CoroLLARY. — Suppose G/K is a simply connected Riemannian
homogeneous space of constant curvature. Let & be a codimension m — k
foliation of M with trivial normal bundle. Then § is a homogeneous G/K-
foliation if and only if there exist m — k linearly independent one-forms
Oy, ..., 0, € A'(M) defining § and one-forms o, _;.1, ..., ®, € A(M)
satisfying do, = ) o, Ao, i=1,...,m.

1gj<lsm

Proof. — If & is defined by such one-forms, then § is a homogeneous
G/K-foliation by Proposition (3.1). If § is a homogeneous G/K-foliation,
then the metricon G/K induces a smooth Riemannian metric on the normal
bundle of §. The hypothesis on G/K implies that K is the full orthogonal
group O(m—k) and hence the principal K-bundle p:I'\f*(G) - M
constructed in the proof of the theorem is just the bundle of orthonormal
frames of the normal bundle of &. The conclusion now follows from the
triviality of this principal K-bundle.

3.3. CorROLLARY. — Let §& be a codimension two foliation of M with trivial
normal bundle. Then

a) & is transversely Euclidean (homogeneous SO(2)-R?*/SO(2)) if and
only if it is defined by independent one-forms ®,, ®, satisfying

1
do, 250)2 A 0y, do, = —zml A ©y, doy = 0.

b) § is transversely hyperbolic (homogeneous SL(2,R)/SO(2)) if and only
1
if it is defined by independent one-forms ®,, ®, satisfying do, = Ecoz A O3,
do, = 0, A 0, — 20, A ®5, do; = — ©; A O;.
¢) § is transversely elliptic (homogeneous SO(3)/SO(2)) if and only if it is

1
defined by independent one-forms ®,, ®, satisfying do, = imz A O3,
1 1
do, = — Ewl A ©z, do, = Eml A Q,.
3.4. CorROLLARY. — Let § be a codimension q foliation of M with trivial

normal bundle. Then § is transversely affine (homogeneous
GL(q,R)-R%GL(q,R)) if and only if there exist ¢ = m — k independent one-
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forms ®, ...,0,_€A'(M) defining §F (where k = q*) and one-forms
Op—pt1r - - -» O, € AY(M) satisfying

do, = Z Cw; Aoy, i=1,...,m.

1<j<ism

Proof. — If § is transversely affine, then the principal K-bundle
p: T\ f*(G) - M is just the bundle of frames of the normal bundle of F.

4. Riemannian homogeneous foliations.

Throughout this section we assume that M and K are compact. Pick
and fix a G-invariant Riemannian metric on G/K.

4.1. THEOREM. — The universal cover of M fibers over the universal cover of
G/K, the fibers being the leaves of the lifted foliation.

Proof. — Let n: M - M and f: M — G/K beasin Theorem 1. Let M
be the universal cover of M and choose a coveringmap n’' : M — M. Let
& be the foliation of M obtained by lifting § via meon’ and let
f = fon'. Then f is a submersion defining §. Let E = T(M) be the
bundle tangent to the leaves of &. Choose a subbundle Q = T(M) such
that TM)=E® Q. If {(Uu’fw)"gqﬂ)}m,ﬁe;\ is a G/K-cocycle defining &,
then Q inherits a smooth Riemannian metric by the requirement that
fa‘x: Q. —+Tfa(x,(G/K), xeU, be a vector space isometry. Choose a
Riemannian metric on E and define a Riemannian metric on M by the
requirement that E, isorthogonalto Q, forall x € M. Then this metric on
the foliated manifold (M, ) is bundle-like in the sense of [8]. Moreover, since
M is compact, this bundle-like metric is complete.

The complete bundle-like metric on M lifts via © o’ to a complete
bundle-like metric on the foliated manifold (M,). But & is regular since it
is defined by a global submersion. Hence, by Corollary 3 in [8], the space of
leaves M/& of & is a complete, Riemannian, Hausdorff manifold and the
natural projection M — M/ is a fibration. Since M is simply connected, it
fgllgws that M/§ is simply connected. Now f jnducg_s\fl local isompe\tg
M/& — G/K which lifts to a local isometry M/§ — (G/K) where (G/K)
denotes the simply connected Riemannian cover of G/K. Hence M/§ and
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N
(G/K) are isometric [4] since each is a connected, simply connected,
complete, analytic, Riemannian manifold.

Remark. — Corollary ;\1§ an immediate consequence of Theorgr\n/ (4.1). If
we do not assume that (G/K) is contractible, but only that n,(G/K) = 0,
then the leaves of & are simply connected and we still have. that
i, : my(L) = my(M) is injective for all L e &.

4.2. CorROLLARY. — Suppose the universal cover of G/K is contractible.

i) If dim § = 1, then M is contractible.
i) If dim § = 2, then either M is contractible or has the homotopy type of
S2. In the latter case, all the leaves of & are compact with universal cover S2.

We adopt the following notation for the rest of this section and the next.
Let N denote the connected Riemannian manifold G/K. Thus G is a
transitive group of isometries of N. Let N be the universal cover of N
endowed with the Riemannian metric lifted from N and let G be the full
group of isometries of N. Then G acts transitively on N. Theorem (4.1)
tells us that we have a fibration p : M - M/§ = N. Let n,(M) denote the
group of covering transformations of M. Eachelement e n,(M) induces
an isometry (1) : M/§ — M/§. We regard (1) as an isometry of N.
Hence Y(t) € G and we have a homomorphism  :n,(M) -» G. Let
L =imagey =« G. For xeN, let X, ={ceZX:o(x)=x} and
Z(x) = {o(x) : ceX}. Let Le & and choose aleaf L' € § which projects
to L. Then the orbit Z(x) of x = p(L’) under £ depends only on L and
we denote this orbit by Xl. The following lemma is elementary.

43. LEMMA. — Let L be a leaf of §. Then

i) L isproper (i.e., L is animbedded submanifold of M) ifand only if ' is
a discrete subset of N.

ii) L is compact if and only if Zv is discrete and closed.

iii) L is dense if and only if XL is dense.

iv) The space of leaves of & is homeomorphic to the orbit space \N.

V) Let £ denote the closure of £ in G. Then for xe N, we have

X(x) = Z(x); that is, the orbit of x under I is the closure of the orbit of x
under X.

4.4. THEOREM. — Let L€ &. Then L is a submanifold of M and the
foliation of L by the leaves of § is a homogeneous G'/K-foliation where G’
is a closed subgroup of G and K is a compact subgroup of G'.
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Proof. — Let m:M — M be the universal cover of M. We have a
fibration p : M — N whose fibers are the leaves of §§ = n~!(§). Choose a
leaf L' < n~ (L) and let x = p(L’) e N. Then

D) =nH(D) = pIEX) = pTIEX) = p~ (2X)

and so we have a fibration p/n~*(L) :n~}(L) » Z(x). Now Z(x) is the orbit
of x under the action of the Lie group Z and hence is a submanifold of N
from which it follows that ©~!(L)is a submanifold of M. Hence L isa
submanifold of M.

It remains to demonstrate that the foliation of L by the leaves of &
is a homogeneous foliation. Now n/n (L) : n (L) » L is a regular
covering and p/n"}(L): n L) > Z(x) is a submersion defining
§/m YL) = n~Y(F/L). Moreover, for each covering transformation t© of
n~ (L) we have (Y(1)/Z(x)) » (p/n~*(L)) = (p/n~ (L)) o (x/n~*(L)). Hence
there exists a Z(x)-cocycle {(U,f,Oup)}epa defining &/L such that
o,€Z < Z for all o, peA. But Z(x) inherits a Riemannian metric from
N and Y(1)/Z(x) : (x) - Z(x) is an isometry. Moreover, £ acts transi-
tively on Z(x) and so Z(x) &~ £/K; where K; is a compact subgroup of
X. Taking G’ = £, we have that §/L is a homogeneous G’/K;-foliation.

Remark. — Since {Z(x):x €N} :{Z(x):xe N} partitions N, we see
that {L :L e &} partitions M and hence & = {L : L € &} is afoliation of
M, possibly with singularities.

4.5. TueoreM. — If N iscompact (i.e.,if N = G/K is compact with finite
fundamental group), there exists a connected, open, dense, §-saturated submani-
fold V of M which fibers over a connected Hausdorff manifold, the fibers being
the leaves of &. Thus, in particular, the leaves of & contained in V are
mutually diffeomorphic.

Proof. — Since N is compact, it follows that G is compact. Thus £ isa
compact Lie group acting smoothly on N. Let W = N be the union of the
principal orbits [2]. Then W is an open, dense, saturated subset of N and
Z\W is a connected Hausdorff manifold [2]. Let V = n(p~*(W)) =« M.
Then V is an open, dense, ¥-saturated submanifold of M. We have a
smooth submersion V — £\W defining &/V and hence §/V is a regular
foliation of V with all leaves compact. Thus V — £\W = V/§ isafibration
[5], the fibers being the leaves of &/V. In particular, V is connected.
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4.6. THEOREM. — Suppose (67{() is compact and that L € § is a compact
leaf. If the holonomy group of L has non-exponential growth (respectively,
polynomial growth of degree d), then all the leaves of § have polynomial
growth (respectively, polynomial growth of degree d). If the fundamental group
of L has non-exponential growth (respectively, polynomial growth of degree
d), then m,(M) has non-exponential growth (respectively, polynomial growth
of degree d) and all the leaves of § have polynomial growth (respectively,
polynomial growth of degree d).

Proof. — Since L is compact we have that X' is discrete and closed,
hence finite. Thus n~!(L) is a finite union of leaves. Let L' be a leaf of &
which projects to L and let n; (M), = {ten;(M):1(L)=L"}. Then the
index of mn;(M),. in m,(M) is finite and hence [n;(M) :i n,(L)] < co. The
holonomy group of L is isomorphic to the linear holonomy group of L and
hence is a finitely generated linear group with non-exponential growth, hence
polynomial growth [10] (respectively, polynomial growth of degree d).
Hence, by Corollary (2.3), all the leaves of § have polynomial growth
(respectively, polynomial growth of degree d). If m,(L) has non-exponential
growth (respectively, polynomial growth of degree d), thenso does i, m,(L).
Since [n;(M) :i,n,(L)] < oo, it follows from [1] that m,(M) has non-
exponential growth (respectively, polynomial growth of degree d).

Combining Theorems (4.1), (4.4), (4.5) and (4.6), we obtain Theorem 3.

4.7. ProposiTiON. — If =, (L) is ﬁnit,_e\for some leaf L e &, then all the
leaves of § are compact. If an addition (G/K) is compact,then mt,(M) isfinite.

Proof. — Let m: M — M be the universal cover of M and let =~ (L),
be a connected component of n~*(L). Then n/n " *(L), :n"*(L), » L isa
covering of L. Since L is compact with finite fundamental group, it follows
that n~!(L), iscompact. Let L’ bealeafof § containedin n~*(L),. Then
L' is a closed subset of the compact space n '(L), and hence L' is
compact. Thus all the leaves of & are compact and so all the leaves of & are
compact. If in addition N is compact, then n : M — N is a fibration with
compact base and compact fiber. Thus M is compact and so =, (M) is finite.

5. Elliptic, Euclidean, and hyperbolic foliations.

Throughout this section M denotes a closed manifold.

5.1. ProPOSITION. — Let & be a one-dimensional homogeneous
SO(2q+1)/SO(2q) = S**-foliation of M. Then mn,(M) has polynomial
growth of degree d < 1 and § has a compact leaf.
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Proof. — Suppose that no leaf of & is compact. Then all the leaves of &
are simply connected and hence i,m,(L) is trivial for all Le§. Let
ten,;(M). Then,since (1) : S>? —» S?7 has a fixed point, there exists a leaf
L'ed such that t(L)=L. I L=nl)eF, we have
T e (M), = {pen,;(M) : WL')=L"} =~ i,n,(L)and hence t is the identity
covering transformation and so M is simply connected. Thus M fibers over
S, the fibers being the leaves of . But this implies that all the leaves of &
are circles which is impossible. Hence there exists a compact leaf L € §.
Since the fundamental group of L has polynomial growth of degree 1, it
follows from Theorem (4.6) that m,(M) has polynomial growth of degree
d<1.

5.2. PROPOSITION. — Let & be a codimension two elliptic foliation of M.
Then either

i) all the leaves of & are compact,
ii) all the leaves of § are dense, or

iii) all the leaves of & have polynomial growth and there exists a compact

leaf.

Proof. — In this case N =N =82, G = SO(3) and so we have
V:m, (M) - SO(3) with image £ = SO(3). Thus X is a compact Lie
group and hence has only finitely many connected components. Let (X), be
the connected component of the identity. Then (Z), is a compact connected
Lie group and [Z:(Z),] < ©. Let £, =% n(2),. Then X, is a
subgroup of T and [X :X;] < co. Hence, by [1], Z, is finitely generated
and has the same growth type as . We consider four cases :

a) (£), is zero-dimensional : Then X is discrete and hence finite. Thus
%(x) is finite for all x € S? and so all the leaves of & are compact by
Lemma (4.3).

b) (Z), is one-dimensional : Then (Z), isisomorphicto S' andso X, is
~ (finitely generated) abelian. Hence X has polynomial growth. Thus, by
arguments identical to those used to establish Theorem 1, all the leaves of §
have polynomial growth. Now X, is not trivial for otherwise (Z), would be
zero-dimensional. Choose a non-identity element A€ X,. Then A has
exactly two fixed points x,yeS*. If BeX, is nontrivial, then
ABx = BAx = Bx and ABy = BAy = By. Hence either Bx = x and
By =y or else Bx =y and By = x. Either way, the orbit of x under Z,
is finite. Thus X(x) is finite and so § has a compact leaf.
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¢) (£), is two-dimensional : Then (Z), is isomorphic to the two-
dimensional torus which is impossible.

d) (%), is three-dimensional : Then (L), = SO(3) and so I is dense in
SO(3). Hence Z(x) is densein S? for all x € S? and so all the leaves of &
are dense.

5.3. PROPOSITION. — Let § be a codimension two Euclidean, elliptic or
hyperbolic foliation of M. If L € § is a compact leaf with H'(L) = 0, then
all the leaves of § are compact. If L € & is a (not necessarily compact) leaf
with H{(L,Z) = 0, then i, n,(L) is a normal subgroup of m,(M).

Proof. — Let L € & and choose a leaf L' € & which projects to L. Let
x = p(L')eN. Since X, is abelian, the composition

iy . v
n, (L) — i,n (L) E t,;(M)y — Z,

induces a surjection H,(L,Z) — X,. Suppose L iscompact. Then X(x) = XL
is discrete and closed. If H}(L) = 0, then H,(L,Z) is finite and so Z, is
finite. Thus X is a discrete subgroup of G and hence X(x) is discrete and
closed for all xeN [4]. Thus all the leaves of & are compact. If
H,(L,Z) = 0, then X, is trivial and hence =n,(M). = kernel . Thus
i,my(L) is normal in w,(M).

5.4. PROPOSITION. — Let § be a codimension two Euclidean or hyperbolic
foliation of M. If i m,(Ly) is trivial for some leaf L, &, then the
fundamental group of every leaf is abelian.

Proof. — Choose a leaf Ly = n~}(L,). Then
kernel ¥ < m;(M),, = i, m,(Lo)

and hence V| is injective. Let Le&. Choose L' = n~ (L) and let
z = p(L') e N. Since n,(N) = 0 we know that i, : n,(L) > n,;(M) is one-
one and so { o i, maps m,(L) isomorphically onto X,. ButX, < {ge G :
g(z)=z} = SO(2) and so X, is abelian.

5.5. PROPOSITION. — Suppose G is solvable. If § contains a leaf whose
fundamental group is solvable, then m,(M) is solvable. Thus if G is solvable
and dim § = 1, then m,(M) is solvable.
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Proof. — Suppose L € § is such that n,(L) is solvable. Then i m, (L) is
solvable. Choose a leaf L'e & which projects to L. Then we have
kernel § < (M), = i mn, (L) and hence kernel { is solvable. But
n,(M)/kernel y = X is solvable since £ = G. Thus w,(M) is solvable.

5.6. COROLLARY. — If ,(M?3) is not solvable, then M3 does not support a
codimension two Euclidean foliation.

5.7. ProposiTioN. — If H;(M,Z) = 0, then M does not support a
codimension two Euclidean foliation.

Proof. — If §& is a codimension two Euclidean foliation of M, then we
have y:m,(M) > G = SO(2).R?. Let h:SO(2)-R? - SO(2) be the
projection. Since H,(M,Z) = 0 and SO(2) is abelian, it follows that h o
is the trivial homomorphism. Thus if t € n,;(M), then (1) is a translation
of R? and hence & isa Lie R2?-foliation. Thus & is defined by two linearly
independent closed one-forms and hence, since H!(M) = 0, there exists a
submersion M — R? defining § which is impossible.

5.8. PROPOSITION. — Let § be a codimension two Euclidean foliation of
M. Ifall the leaves of & are simply connected, then § is a Lie R*-foliation
and m,(M) is abelian.

Proof. — Let ceX. Suppose o(x) = x for some xeR?. Choose
ten,(M) such that Y(1) =c and let L'e be a leaf such that
p(L') = x. Then t(L')=1L". Setting L =n(l")e, we have that
ten, (M) = i m (L). Since L issimply connected, it follows that t, and
hence o, is theidentity transformation. Thus T acts freely on R? andso X
is a group of translations. Hence & is a Lie R2-foliation. Finally,
VY : 7w, (M) > X is an isomorphism and so =,(M) is abelian.

5.9. CoROLLARY. — Let § be a codimension two Euclidean foliation of the
3-manifold M.

i) If m,(M) is not abelian, then § has a compact leaf.
ii) If § is not a Lie R*-foliation, then & has a compact leaf.

5.10. PROPOSITION. — Let § be a codimension two Euclidean foliation of
M and suppose that m,(M) is abelian. Then either

i) § is a Lie R%-foliation, or
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i) § has a compact leaf L such that i, :m,(L) > n,(M) is an
isomorphism.

Proof. — Since m,(M) is abelian, we have that X is abelian. Hence all the
non-identity elements of £ have the same fixed point set Z. Either Z is
empty or Z hasoneelement. If Z isempty, then X isa group of translations
andso § is a Lie R*-foliation. Suppose Z = {x}, xeR?>. Let L'e & bea
leaf such that p(L) = x and let L = n(L')e §. Then X! = Z(x) = {x}
and hence L is compact. Let t € t;(M). Then,since y(t)(x) = x, we must
have that t(L') = L'. Thus ten,(M), and so

i,m (L) = ty(M)p = m;(M).

5.11. CoroOLLARY. — Let & be a codimension two Euclidean foliation of M
where M is a 3-manifold with n,(M) abelian, n,(M) # Z. Then § isaLie
R2-foliation.

Proof. — If not, then § has a compact leaf L such that
i, :my(L)y - n,;(M) isanisomorphism. Since § is one-dimensional, we have
that L = S! and hence =n,(M) = Z, a contradiction.

5.12. CoRrROLLARY. — Let & be a codimension two Euclidean foliation of M
where M is an orientable 4-manifold with n,(M) abelian, n,(M) + Z x Z.
Then § is a Lie R2-foliation.

Proof. — If not, then § has a compact leaf L such that
i, :my (L) » n,(M) is an isomorphism. Since M is orientable and § is
transversely orientable, we have that the leaves of § are orientable. Thus L
is a compact orientable surface. If the genus of L is one, then
n,(M) = Z x Z, contrary to assumption. If the genus of L is greater than
one, then w, (M) is not abelian, contrary to assumption. If the genus of L is
zero, then M is simply connected and hence doesn’t support a codimension
two Euclidean foliation.

5.13. ProposITION. — If m,(M) has non-exponential growth, then M does
not support a codimension two hyperbolic foliation.

Proof. — In this case G = SL(2,R) and we have { : nr,(M) - SL(2,R)
with image ¥ = £ < SL(2,R). By Lemma (4.3), Z\N is compact and
hence X\G is compact. Thus Z\SL(2,R) is compact which is impossible
since £ has non-exponential growth.
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