Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces
Annales de l'Institut Fourier, Tome 28 (1978) no. 2, pp. 187-200.

Une condition nécessaire et suffisante pour qu’une limite d’espaces de Stein soit un espace de Stein est prouvée. Cette condition donne une réciproque faible d’un théorème classique de Behnke-Stein.

A necessary and sufficient condition, which is a weak converse of a classical theorem of Behnke-Stein, in order that a limit of Stein spaces be again a Stein space is proved.

@article{AIF_1978__28_2_187_0,
     author = {Silva, Alessandro},
     title = {Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {187--200},
     publisher = {Imprimerie Durand},
     address = {28 - Luisant},
     volume = {28},
     number = {2},
     year = {1978},
     doi = {10.5802/aif.695},
     mrnumber = {58 \#22656},
     zbl = {0365.32008},
     language = {en},
     url = {aif.centre-mersenne.org/item/AIF_1978__28_2_187_0/}
}
Silva, Alessandro. Rungescher Satz and a condition for Steiness for the limit of an increasing sequence of Stein spaces. Annales de l'Institut Fourier, Tome 28 (1978) no. 2, pp. 187-200. doi : 10.5802/aif.695. https://aif.centre-mersenne.org/item/AIF_1978__28_2_187_0/

[1] A. Andreotti et H. Grauert, Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193-260. | Numdam | MR 27 #343 | Zbl 0106.05501

[2] A. Andreotti et E. Vesentini, Les Théorèmes fondamentaux de la théorie des espaces holomorphiquement complets, in Sem. Ehresmann, Paris, (1962). | Numdam

[3] H. Behnke und K. Stein, Konvergente Folgen von Regularitatsbereichen und die meromorphe Konvexitat, Math. Annalen, 116 (1939), 204-216. | JFM 64.0322.03 | Zbl 0020.37803

[4] A. Cassa, Coomologia separata sulle varieta analitiche complesse, Annali SNS Pisa, 25 (1971), 291-323. | Numdam

[5] J. E. Fornaess, An increasing sequence of Stein manifolds whose limit is not Stein, Math. Annalen, 223 (1976), 275-277. | MR 54 #5498 | Zbl 0334.32017

[6] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. Journal, II, 9 (1957), 119-183. | MR 21 #1328 | Zbl 0118.26104

[7] A. Hirschowitz, Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Inventiones Math., 26 (1974), 303-322. | MR 50 #10323 | Zbl 0275.32009

[8] Y. T. Siu, Non countable dimension of cohomology groups of analytic sheaves and domains of holomorphy, Math. Zeit., 102 (1967), 17-29. | MR 36 #5394 | Zbl 0167.06802

[9] F. Treves, Locally convex spaces and linear partial differential equations, Springer, Berlin (1967). | MR 36 #6986 | Zbl 0152.32104

[10] V. Villani, Un teorema di passaggio al limite per la coomologia degli spazi complessi, Rend. Sc. fis. mat. e nat. Accad. Lincei, 43 (1967), 168-170. | MR 37 #6487 | Zbl 0157.40501

[11] J. Wermer, An example concerning polynomial convexity, Math. Annalen, 139 (1959), 147-150. | MR 22 #12238 | Zbl 0094.28302

[12] A. Markoe, Runge families and inductive limits of Stein spaces, Ann. Inst. Fourier, 27 (1977), 117-128. | Numdam | MR 58 #28665 | Zbl 0323.32014

[13] J.-P. Ramis, G. Ruget et J. L. Verdier, Dualité Relative en Géométrie Analytique Complexe, Inv. Math., 13 (1971), 261-283. | MR 46 #7553 | Zbl 0218.14010

[14] A. Ogus, Local cohomological dimension, Ann. of Math., 98 (1973), 327-365. | MR 58 #22059 | Zbl 0308.14003