The equivalence of the two following properties is proved for every Banach lattice :
1) is weakly sequentially complete.
2) Every -Borel measurable linear functional on is -continuous.
On montre que pour tout espace de Banach réticulé, les deux propriétés suivantes sont équivalentes :
1) est faiblement séquentiellement complet.
2) Toute forme linéaire -mesurable sur le dual topologique est continue.
@article{AIF_1976__26_2_25_0,
author = {Wickstead, A. W.},
title = {A characterization of weakly sequentially complete {Banach} lattices},
journal = {Annales de l'Institut Fourier},
pages = {25--28},
year = {1976},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {26},
number = {2},
doi = {10.5802/aif.611},
zbl = {0295.46017},
mrnumber = {53 #14080},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.611/}
}
TY - JOUR AU - Wickstead, A. W. TI - A characterization of weakly sequentially complete Banach lattices JO - Annales de l'Institut Fourier PY - 1976 SP - 25 EP - 28 VL - 26 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.611/ DO - 10.5802/aif.611 LA - en ID - AIF_1976__26_2_25_0 ER -
%0 Journal Article %A Wickstead, A. W. %T A characterization of weakly sequentially complete Banach lattices %J Annales de l'Institut Fourier %D 1976 %P 25-28 %V 26 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.611/ %R 10.5802/aif.611 %G en %F AIF_1976__26_2_25_0
Wickstead, A. W. A characterization of weakly sequentially complete Banach lattices. Annales de l'Institut Fourier, Tome 26 (1976) no. 2, pp. 25-28. doi: 10.5802/aif.611
[1] , Borel structures in groups and semi-groups, Math. Scand., 28 (1971) 124-128. | Zbl | MR
[2] , Borel structures and a topological zero-one law, Math. Scand., 29 (1971), 245-255. | Zbl | MR
[3] , Abstract Kothe spaces II, Proc. Cam. Phil. Soc., 63 (1967), 951-956. | Zbl | MR
[4] and , Notes on Banach function spaces, Nederl. Akad. Wetensch. Proc. Ser. A., 67 (1964) (a) 507-518, (b) 519-529. | Zbl
[5] , Zur schwachen Kompaktheit in Banachverbanden, Math. Z.j 134 (1973), 303-315. | Zbl | MR
Cité par Sources :



