# ANNALES DE L'INSTITUT FOURIER

A note on rearrangements of Fourier coefficients
Annales de l'Institut Fourier, Volume 26 (1976) no. 2, pp. 29-34.

Let $f\left(x\right)\sim \Sigma {a}_{n}{e}^{2\pi inx},f*\left(x\right)\sim {\sum }_{n=0}^{\infty }a{*}_{n}\phantom{\rule{0.166667em}{0ex}}\mathrm{cos}\phantom{\rule{0.166667em}{0ex}}2\pi nx$, where the $a{*}_{n}$ are the numbers $|{a}_{n}|$ rearranged so that ${a}_{n}^{*}↘0$. Then for any convex increasing $\psi$, $\parallel \psi \left(|f{|}^{2}{\parallel }_{1}\le \parallel \psi \left(20|f*{|}^{2}{\parallel }_{1}$. The special case $\psi \left(t\right)={t}^{q/2}$, $q\ge 2$, gives $\parallel f{\parallel }_{q}\le 5\parallel f*{\parallel }_{q}$ an equivalent of Littlewood.

Soit $f\left(x\right)\sim \Sigma {a}_{n}{e}^{2\pi inx},f*\left(x\right)\sim {\sum }_{n=0}^{\infty }a{*}_{n}\phantom{\rule{0.166667em}{0ex}}\mathrm{cos}\phantom{\rule{0.166667em}{0ex}}2\pi nx$, où la suite $a{*}_{n}$ est le réarrangement décroissant de la suite $|{a}_{n}|$. Pour toute fonction $\psi$ positive, convexe et croissante, on a $\parallel \psi \left(|f{|}^{2}{\parallel }_{1}\le \parallel \psi \left(20|f*{|}^{2}{\parallel }_{1}$. Dans le cas particulier $\psi \left(t\right)={t}^{q/2}$, $q\ge 2$, on obtient l’inégalité de Littlewood $\parallel f{\parallel }_{q}\le 5\parallel f*{\parallel }_{q}$.

@article{AIF_1976__26_2_29_0,
author = {Montgomery, Hugh L.},
title = {A note on rearrangements of {Fourier} coefficients},
journal = {Annales de l'Institut Fourier},
pages = {29--34},
publisher = {Institut Fourier},
volume = {26},
number = {2},
year = {1976},
doi = {10.5802/aif.612},
zbl = {0318.42009},
mrnumber = {53 #11292},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.612/}
}
TY  - JOUR
AU  - Montgomery, Hugh L.
TI  - A note on rearrangements of Fourier coefficients
JO  - Annales de l'Institut Fourier
PY  - 1976
SP  - 29
EP  - 34
VL  - 26
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.612/
DO  - 10.5802/aif.612
LA  - en
ID  - AIF_1976__26_2_29_0
ER  - 
%0 Journal Article
%A Montgomery, Hugh L.
%T A note on rearrangements of Fourier coefficients
%J Annales de l'Institut Fourier
%D 1976
%P 29-34
%V 26
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.612/
%R 10.5802/aif.612
%G en
%F AIF_1976__26_2_29_0
Montgomery, Hugh L. A note on rearrangements of Fourier coefficients. Annales de l'Institut Fourier, Volume 26 (1976) no. 2, pp. 29-34. doi : 10.5802/aif.612. https://aif.centre-mersenne.org/articles/10.5802/aif.612/

 G. A. Bachelis, On the upper and lower majorant properties of Lp(G), Quart. J. Math. (Oxford), (2), 24 (1973), 119-128. | MR | Zbl

 A. Baernstein, II, Integral means, univalent functions and circular symmetrizations, Acta Math., 133 (1974), 139-169. | MR | Zbl

 G. H. Hardy and J. E. Littelwood, Notes on the theory of series (XIII) : Some new properties of Fourier constants, J. London Math. Soc., 6 (1931), 3-9. | JFM | Zbl

 G. H. Hardy and J. E. Littelwood, A new proof of a theorem on rearrangements, J. London math. Soc., 23 (1949), 163-168. | MR | Zbl

 F. R. Keogh, Some inequalities of Littlewood and a problem on rearrangements, J. London Math. Soc., 36 (1961), 362-376. | MR | Zbl

 J. E. Littlewood, On a theorem of Paley, J. London Math. Soc., 29 (1954), 387-395. | MR | Zbl

 J. E. Littlewood, On inequalities between f and f⋆, J. London Math. Soc., 35 (1960), 352-365. | MR | Zbl

 H. L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Springer-Verlag, Vol. 227, (1971), 187 pp. | MR | Zbl

 R. E. A. C. Paley, Some theorems on orthogonal functions, Studia Math., 3 (1931), 226-238. | EuDML | JFM | Zbl

 H. S. Shapiro, Majorant problems for Fourier coefficients, to appear. | Zbl

 A. Zygmund, Trigonometric series, Second Edition, Cambridge University Press, 1968.

Cited by Sources: