On B r -completeness
Annales de l'Institut Fourier, Tome 25 (1975) no. 2, pp. 235-248.

Dans le présent article il est démontré que si {E n } n=1 et {F n } n=1 sont deux suites d’espaces de Banach de dimension infinie, alors H= n=1 E n × n=1 F n n’est pas B r -complet. Il est démontré aussi que si {E n } n=1 et {F n } n=1 sont de plus des espaces réflexifs il y a sur H une topologie localement convexe et séparée moins fine que l’initiale, telle que H[] est un espace tonnelé et bornologique, qui n’est pas limite inductive d’espaces de Baire. On donne aussi d’autres résultats sur la B r -complétude et les espaces bornologiques.

In this paper it is proved that if {E n } n=1 and {F n } n=1 are two sequences of infinite-dimensional Banach spaces then H= n=1 E n × n=1 F n is not B r -complete. If {E n } n=1 and {F n } n=1 are also reflexive spaces there is on H a separated locally convex topology , coarser than the initial one, such that H[] is a bornological barrelled space which is not an inductive limit of Baire spaces. It is given also another results on B r -completeness and bornological spaces.

@article{AIF_1975__25_2_235_0,
     author = {Valdivia, Manuel},
     title = {On $B_r$-completeness},
     journal = {Annales de l'Institut Fourier},
     pages = {235--248},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {25},
     number = {2},
     year = {1975},
     doi = {10.5802/aif.564},
     zbl = {0301.46004},
     mrnumber = {53 #3634},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.564/}
}
TY  - JOUR
AU  - Valdivia, Manuel
TI  - On $B_r$-completeness
JO  - Annales de l'Institut Fourier
PY  - 1975
SP  - 235
EP  - 248
VL  - 25
IS  - 2
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.564/
DO  - 10.5802/aif.564
LA  - en
ID  - AIF_1975__25_2_235_0
ER  - 
%0 Journal Article
%A Valdivia, Manuel
%T On $B_r$-completeness
%J Annales de l'Institut Fourier
%D 1975
%P 235-248
%V 25
%N 2
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.564/
%R 10.5802/aif.564
%G en
%F AIF_1975__25_2_235_0
Valdivia, Manuel. On $B_r$-completeness. Annales de l'Institut Fourier, Tome 25 (1975) no. 2, pp. 235-248. doi : 10.5802/aif.564. https://aif.centre-mersenne.org/articles/10.5802/aif.564/

[1] N. Bourbaki, Eléments de Mathématiques, Livre V : Espaces vectoriels topologiques, (Ch. III, Ch. IV, Ch. V), Paris, (1964).

[2] M. De Wilde, Réseaux dans les espaces linéaires à semi-normes, Mém. Soc. Royale des Sc. de Liège, 5e, série, XVIII, 2, (1969). | Zbl

[3] J. Dieudonne, Sur les espaces de Montel metrizables, C.R. Acad. Sci. Paris, 238, (1954), 194-195. | Zbl

[4] J. Dieudonne, Sur les propriétés de permanence de certains espaces vectoriels topologiques, Ann. Soc. Polon. Math., 25 (1952), 50-55. | Zbl

[5] G. Köthe, Topological Vector Spaces I, Berlin-Heidelberg-New York, Springer (1969). | Zbl

[6] G. Köthe, Über die Vollstandigkeit einer Klasse lokalconveser Räume, Math. Nachr. Z., 52, (1950), 627-630. | Zbl

[7] J.T. Marti, Introduction to the theory of Bases, Berlin-Heidelberg-New York, Springer (1969). | Zbl

[8] V. Ptak, Completeness and the open mapping theorem, Bull. Soc. Math. France., 86 (1958), 41-47. | Numdam | Zbl

[9] M. Valdivia, A class of bornological barrelled spaces which are not ultrabornological, Math. Ann., 194 (1971), 43-51. | Zbl

[10] M. Valdivia, Some examples on quasi-barrelled spaces, Ann. Inst. Fourier, 22 (1972), 21-26. | EuDML | Numdam | Zbl

[11] M. Valdivia, On nonbornological barrelled spaces, Ann. Inst. Fourier, 22 (1972), 27-30. | EuDML | Numdam | Zbl

[12] M. Valdivia, On countable strict inductive limits, Manuscripta Mat., 11 (1971), 339-343. | EuDML | Zbl

[13] M. Valdivia, A hereditary property in locally convex spaces, Ann. Inst. Fourier, 21 (1971), 1-2. | EuDML | Numdam | Zbl

[14] M. Valdivia, Absolutely convex sets in barrelled spaces, Ann. Inst. Fourier, 21 (1971), 3-13. | EuDML | Numdam | Zbl

[15] M. Valdivia, The space of distributions Dʹ (Ω) is not Br-complete, Math. Ann., 211 (1974), 145-149. | EuDML | Zbl

Cité par Sources :