Height one specializations of Selmer groups  [ Spécialisations de hauteur un des groupes de Selmer ]
Annales de l'Institut Fourier, à paraître, p. 1-32
Nous donnons des applications de l’étude du comportement des groupes de Selmer sous la spécialisation. Nous considérons les groupes de Selmer associés à de représentations galoisiennes de dimension 4 provenant(i)du produit tensoriel de deux familles cuspidales de Hida F et G,(ii)de la déformation cyclotomique du dernier,(iii)du produit tensoriel d’une forme cuspidale f par une famille de Hida G, où f est une spécialisation classique de F de poids k2.Nous démontrons des théorèmes de contrôle qui relient(a)le groupe de Selmer associé au produit tensoriel des familles de Hida F et G au groupe de Selmer associé à sa déformation cyclotomique,(b)le groupe de Selmer associé au produit tensoriel de f par G au groupe de Selmer associé au produit tensoriel de F et G.Du côté analytique des conjectures principales, Hida a construit des fonctions L p-adiques de Rankin–Selberg à une variable, à deux variables et à trois variables. Nos résultats sur la spécialisation nous permettent de vérifier les résultats de Hida qui relient(a)la fonction L p-adique à deux variables à la fonction L p-adique à trois variables, et(b)la fonction L p-adique à une variables à la fonction L p-adique à deux variables,et nos théorèmes de contrôle pour les groupes de Selmer sont complètement compatibles avec les conjectures principales.
We provide applications to studying the behavior of Selmer groups under specialization. We consider Selmer groups associated to 4-dimensional Galois representations coming from(i)the tensor product of two cuspidal Hida families F and G,(ii)its cyclotomic deformation,(iii)the tensor product of a cusp form f and the Hida family G, where f is a classical specialization of F with weight k2.We prove control theorems to relate(a)the Selmer group associated to the tensor product of Hida families F and G to the Selmer group associated to its cyclotomic deformation, and(b)the Selmer group associated to the tensor product of f and G to the Selmer group associated to the tensor product of F and G.On the analytic side of the main conjectures, Hida has constructed one variable, two variable and three variable Rankin–Selberg p-adic L-functions. Our specialization results enable us to verify that Hida’s results relating(a)the two variable p-adic L-function to the three variable p-adic L-function, and(b)the one variable p-adic L-function to the two variable p-adic L-function,and our control theorems for Selmer groups are completely consistent with the main conjectures.
Reçu le : 2016-08-22
Révisé le : 2017-09-19
Accepté le : 2018-02-02
Classification:  11R23,  11F33,  11F80
Mots clés: théorie d’Iwasawa, théorie de Hida, groupes de Selmer
@unpublished{AIF_0__0_0_A8_0,
     author = {Palvannan, Bharathwaj},
     title = {Height one specializations of Selmer groups},
     note = {to appear in \emph{Annales de l'Institut Fourier}},
}
Palvannan, Bharathwaj. Height one specializations of Selmer groups. Annales de l'Institut Fourier, à paraître, pp. 1-32.

[1] Böckle, Gebhard On the density of modular points in universal deformation spaces, Am. J. Math., Tome 123 (2001) no. 5, pp. 985-1007 | MR 1854117

[2] Cho, Sheena Deformation rings for induced Galois representations, University of California, Los Angeles (USA) (1999) (Ph. D. Thesis)

[3] Cho, Sheena; Vatsal, Vinayak Deformations of induced Galois representations, J. Reine Angew. Math., Tome 556 (2003), pp. 79-98 | Article | MR 1971139 | Zbl 1041.11039

[4] Emerton, Matthew; Pollack, Robert; Weston, Tom Variation of Iwasawa invariants in Hida families, Invent. Math., Tome 163 (2006) no. 3, pp. 523-580 | Article | MR 2207234

[5] Gouvêa, Fernando Q. Deforming Galois representations: controlling the conductor, J. Number Theory, Tome 34 (1990) no. 1, pp. 95-113 | Article | MR 1039770

[6] Greenberg, Ralph Iwasawa’s theory and p-adic L-functions for imaginary quadratic fields, Number theory related to Fermat’s last theorem, Birkhäuser (Progress in Math.) Tome 26 (1982), pp. 275-285 | Zbl 0505.12006

[7] Greenberg, Ralph Iwasawa theory and p-adic deformations of motives, Motives (Seattle, WA, 1991), American Mathematical Society (Proceedings of Symposia in Pure Mathematics) Tome 55 (1994), pp. 193-223 | MR 1265554 | Zbl 0819.11046

[8] Greenberg, Ralph On the structure of certain Galois cohomology groups, Doc. Math. (2006), pp. 335-391 | MR 2290593

[9] Greenberg, Ralph Surjectivity of the global-to-local map defining a Selmer group, Kyoto J. Math., Tome 50 (2010) no. 4, pp. 853-888 | Article | MR 2740696

[10] Greenberg, Ralph On the structure of Selmer groups, Elliptic curves, modular forms and Iwasawa theory, Springer (Springer Proc. Math. Stat.) Tome 188 (2016), pp. 225-252 | MR 3629652 | Zbl 06740243

[11] Greenberg, Ralph; Vatsal, Vinayak On the Iwasawa invariants of elliptic curves, Invent. Math., Tome 142 (2000) no. 1, pp. 17-63

[12] Hara, Takashi; Ochiai, Tadashi The cyclotomic Iwasawa main conjecture for Hilbert cuspforms with complex multiplication, Kyoto J. Math., Tome 58 (2018) no. 1, pp. 1-100 | Article | MR 3776280

[13] Hida, Haruzo A p-adic measure attached to the zeta functions associated with two elliptic modular forms. I, Invent. Math., Tome 79 (1985) no. 1, pp. 159-195 | Article | MR 774534

[14] Hida, Haruzo Galois representations into GL 2 (Z p [[X]]) attached to ordinary cusp forms, Invent. Math., Tome 85 (1986) no. 3, pp. 545-613 | Article | MR 848685

[15] Hida, Haruzo Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Tome 19 (1986) no. 2, pp. 231-273 | MR 868300

[16] Hida, Haruzo A p-adic measure attached to the zeta functions associated with two elliptic modular forms. II, Ann. Inst. Fourier, Tome 38 (1988) no. 3, pp. 1-83 | MR 976685

[17] Hida, Haruzo Elementary theory of L-functions and Eisenstein series, Cambridge University Press, London Mathematical Society Student Texts, Tome 26 (1993), xii+386 pages | Article | MR 1216135

[18] Hida, Haruzo On the search of genuine p-adic modular L-functions for GL (n), Mém. Soc. Math. Fr., Nouv. Sér. (1996) no. 67, pp. 1-110 (With a correction to: “On p-adic L-functions of GL(2)×GL(2) over totally real fields”, Ann. Inst. Fourier 41 (1991), no. 2, p. 311–391) | MR 1479362 | Zbl 0897.11015

[19] Hida, Haruzo Global quadratic units and Hecke algebras, Doc. Math., Tome 3 (1998), pp. 273-284 | MR 1650571

[20] Hida, Haruzo Modular forms and Galois cohomology, Cambridge University Press, Cambridge Studies in Advanced Mathematics, Tome 69 (2000), x+343 pages | Article | MR 1779182

[21] Hida, Haruzo; Tilouine, Jacques On the anticyclotomic main conjecture for CM fields, Invent. Math., Tome 117 (1994) no. 1, pp. 89-147 | Article | MR 1269427 | Zbl 0819.11047

[22] Hsieh, Ming-Lun Eisenstein congruence on unitary groups and Iwasawa main conjectures for CM fields, J. Am. Math. Soc., Tome 27 (2014) no. 3, pp. 753-862 | Article | MR 3194494

[23] Kings, Guido; Loeffler, David; Zerbes, Sarah Livia Rankin-Eisenstein classes and explicit reciprocity laws, Camb. J. Math., Tome 5 (2017) no. 1, pp. 1-122 | Article | MR 3637653

[24] Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia Euler systems for Rankin-Selberg convolutions of modular forms, Ann. Math., Tome 180 (2014) no. 2, pp. 653-771 | Article | MR 3224721

[25] Liu, Qing Algebraic geometry and arithmetic curves, Oxford University Press, Oxford Graduate Texts in Mathematics, Tome 6 (2002), xvi+576 pages (Translated from the French by Reinie Erné) | MR 1917232

[26] Van Order, Jeanine Rankin-Selberg L-functions in cyclotomic towers, I (2012) (https://arxiv.org/abs/1207.1672 )

[27] Van Order, Jeanine Rankin-Selberg L-functions in cyclotomic towers, II (2012) (https://arxiv.org/abs/1207.1673 )

[28] Palvannan, Bharathwaj On Selmer groups and factoring p-adic L-functions, Int. Math. Res. Not. (2017) (published online, to appear in print.) | Article

[29] The Sage Developers SageMath, the Sage Mathematics Software System (Version 7.2) (http://www.sagemath.org )