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TOWARDS A DERIVATION OF CLASSICAL
ELECTRODYNAMICS OF CHARGES AND FIELDS
FROM QED

by Zied AMMARI,
Marco FALCONI & Fumio HTROSHIMA (*)

ABSTRACT. The purpose of this article is twofold:

(1) On one hand, we rigorously derive the Newton-Maxwell equation in the
Coulomb gauge from first principles of quantum electrodynamics in agree-
ment with the formal Bohr correspondence principle of quantum mechanics.

(2) On the other hand, we establish the global well-posedness of the Newton—
Maxwell system on energy-spaces under weak assumptions on the charge
distribution.

Both results improve the state of the art, and are obtained by incorporating semi-
classical and measure theoretical techniques. One of the novelties is the use of
quantum propagation properties in order to build global solutions of the Newton—
Maxwell equation.

REsSUME. — L’objectif de cet article est double :

(1) D’une part, la dérivation rigoureuse et cohérente avec le principe de cor-
respondance de Bohr de I’équation de Newton-Maxwell dans la jauge de
Coulomb & partir de ’électrodynamique quantique.

(2) D’autre part, la preuve du caractére bien posé du systéme de Newton—
Maxwell sur des espaces d’énergies adaptés avec des hypotheéses faibles sur la
distribution des charges.

Les deux résultats améliorent ’état de I'art et sont obtenus en incorporant des
techniques semi-classiques et de la théorie des mesures. L’une des nouveautés est
l'utilisation des propriétés de propagation quantique afin de construire des solutions
globales de I’équation de Newton—-Maxwell.
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1. Introduction

The dynamics of charged particles in interaction with the electromagnetic
field is a topic that has been at the heart of physical and mathematical in-
vestigations for the most part of the last two centuries, and it is still of
great interest for a large community of scientists, [43]. In the current state
of the art, we are still far from a complete understanding of such dynamics,
especially from a mathematical perspective: the interaction carries singu-
larities of various nature both at the classical and quantum levels, that are
quite difficult to deal with, see e.g., [47, 61]. It is well-known that, from a
classical standpoint, an atomic system is not stable: according to Larmor’s
formula electrons would lose energy by radiation when accelerated by the
nucleus’ electrostatic force, thus collapsing! In addition, the charge distri-
bution of a particle cannot be concentrated at a single point. Otherwise, it
would yield an infinite electrostatic energy caused by the self-interaction of
the particle with its own field; and consequently leading to known patho-
logical behaviors of the Abraham-Lorentz radiation reaction force. On the
other hand, if one passes to the quantum theory that was indeed developed
in good part to address the issues raised by classical electrodynamics, a
stable atomic model can be defined. However, the relativistic nature of the
quantum electromagnetic field introduces new divergences, both infrared
and ultraviolet, that require a so-called renormalization procedure to be
dealt with. Unfortunately, renormalization for quantum electrodynamics,
both with relativistic lepton fields and nonrelativistic point charges, has not
yet been put on firm mathematical grounds, see [59] for a more detailed
discussion. In the absence of such Lorentz covariant fundamental theory,
one can alternatively state that the classical theory of electrodynamics is
not appropriate for describing the behavior of an electron at a distance
less than its Compton wavelength; and thus justifying the introduction of
extended non-point charge distributions.

The aim of this paper is to study the mathematical interplay between
the quantum and classical features of electrodynamics, in the case of ex-
tended and nonrelativistic charges in interaction with the electromagnetic
field. Physically, we are thinking about molecules, ions or atoms, possibly
different among each other, interacting both among themselves, with a pair
potential, and with the electromagnetic field. From a classical standpoint,
the dynamics is governed by the Newton—-Maxwell system of equations, a
coupled PDE-ODE nonlinear system, while at the quantum level the lin-
ear evolution is generated by the so-called Pauli-Fierz Hamiltonian, [14].
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We rigorously derive the classical dynamics starting from the quantum dy-
namics in the limit 7 — 0. Here A is, as usual in semiclassical analysis, a
dimensionless parameter measuring how strong the quantum effects are in
the system. Thus, verifying the validity of Bohr’s correspondence principle.
In addition, we prove global well-posedness of the classic Newton—Maxwell
system for “rough” charge distributions.

Bohr’s correspondence principle states that in the limit of large quantum
numbers, i.e., at scales where the noncommutative nature of observables
becomes irrelevant, the physical description of a quantum system should
converge to the one dictated by its classical analogue. While such commonly
accepted physical principle is nowadays mathematically understood to a
good extent for particle systems, less is known for field theories. For the
electrodynamics of extended charges, there are partial results available,
limited only to coherent initial quantum states of minimal uncertainty, with
no initial correlation between the particle’s and field’s subsystems [45].

We extend such analysis in two directions, in Theorem 1.4: On one hand,
we relax the assumptions on the charge distributions of the particles, and
on the other hand, we prove the correspondence principle for a very general
class of quantum states, including highly correlated and incoherent ones.
Moreover, our approach is different from the one in [45] and uses the more
general concept of Wigner measures. This allows us to formulate an essen-
tially complete mathematical picture of the correspondence principle for
such fundamental interaction.

A second element of novelty is that we use the semiclassical features of
quantum dynamics to prove results on the classical dynamics in a way that
was not, up to our knowledge, explored before in QFT. In fact, we prove
by infinite-dimensional semiclassical analysis and measure theoretical tech-
niques, global well-posedness for the Newton—Maxwell system, under weak
regularity assumptions on the particles’ charge distributions, see Theo-
rem B.8 and Theorem 1.3. The regularity of the charge distribution affects
the fixed-point estimates for such nonlinear evolution system, and it plays
a crucial role for the ODE part of the system: below a certain regularity
threshold the vector field of interaction is not Lipschitz, and thus it is not
possible to close a standard fixed point argument as in [28]. While on the
PDE part a lack of regularity may be compensated by finer spacetime es-
timates, for the ODE part there is less space of maneuver, see Section 2.2
for a discussion. Instead, we take a “quantum detour”, exploiting the well-
defined quantum dynamics to define the classical one; we find this approach
very natural from a physical perspective as classical theories are only an
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approximation of quantum ones, even if mathematically it could seem at
first sight surprising, it reflects the regularizing character of the quantum
dynamics. We also prove some new interesting regularity propagation esti-
mates, inherited from the corresponding quantum ones, see Proposition 5.7.
Moreover, we conjecture that the assumptions (4, ){Agl)) used in this ar-
ticle are thresholds for the Hadamard stability of the Newton-Maxwell
equation in the space X! defined in (1.8).

One of the main tools in our investigation is Wigner measures. This math-
ematical object is of course well-known in homogenization and in semiclassi-
cal analysis over finite dimensional spaces, see for instance [1, 21, 34, 50, 60].
In recent years, these measures have been extended on the one hand to
many-body theory in the mean-filed scaling [8, 10], and on the other to
interacting quantum fields [4, 5]. Our analysis here expands the previous
investigations to systems of quantum particles coupled to quantized fields.
In addition, we provide here several improvements of those techniques sum-
marized in Appendices B and C.

Let us conclude this general introduction by providing some references. In
addition to [28] there are quite some works devoted to the Newton-Maxwell
system of equations [11, 15, 16, 18, 19, 40, 41, 42, 44, 46]. Whereas the
Pauli-Fierz dynamics and nonrelativistic quantum electrodynamics have
attracted a great interest from the mathematical physics community, see,
e.g., [12, 13, 17, 20, 27, 31, 32, 33, 35, 36, 53]. Apart from the already
mentioned paper [45], let us mention some other works where the classical
limit of the Pauli-Fierz Hamiltonian has been studied in a different scaling,
and with a different physical interpretation [24, 25, 26, 48, 49].

In the rest of this introduction we will define some notations, present the
mathematical setting of the problem and conclude with the statement of
our main results, Theorems 1.3 and 1.4.

In Section 2, we focus on the classical Newton—Maxwell system and its
uniqueness properties.

Section 3 is devoted to the quantum system, in particular we provide
some new uniform estimates for the Pauli-Fierz Hamiltonian that are cru-
cial to our analysis.

In Section 4, we study the classical limit 7 — 0 of the quantum dynamics
and derive the characteristic equation satisfied by its Wigner measures.

Finally, Section 5 is devoted to the proof of Theorems 1.3 and 1.4.

Appendix A is devoted to introducing fundamental tools for establishing
uniform bounds related to the annihilation and creation operators.
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Appendix B contains abstract results — of independent interest — con-
cerning:
(1) Equivalence between characteristic and Liouville equations.
(2) Probabilistic representation of measure-valued solutions of Liouville
equations.
(3) Construction of generalized global flow for abstract initial value
problems.

The measure theoretical techniques presented in Appendix B are crucial
in the proof of our main results. It puts in a conclusive form several ideas
that appeared previously in [6, 7, 57].

Appendix C establishes convergence results towards Wigner measures
under optimal regularity assumptions on quantum states.

Notations and main results. — In this paragraph we first introduce the
precise mathematical formulation of the quantum and classical models of
electrodynamics that we shall consider and then state our main results.
Recall that classical electrodynamics is governed by the Newton—Maxwell
equation while quantum electrodynamics is described by the Pauli-Fierz
Hamiltonian. Our main contributions are summarized in Theorem 1.3 where
existence of unique global solutions of the Newton—Maxwell equation is es-
tablished and in Theorem 1.4 where the above solutions are derived as the
classical limit 7 — 0 of quantum Pauli—Fierz dynamics.

1.1. Newton—Maxwell equation

Consider n extended classical particles in the configuration space R,
with dimension d > 3, interacting with an electromagnetic field. The 4"
particle has an assigned mass m; > 0 and a charge distribution(*)

pi ' RT— R
and their dynamics is completely characterized by their momenta p;, =

(pY)v=1....a € R%, and positions ¢; = (¢),=1....a € R On the other hand,

it is convenient for our purposes to describe the electromagnetic field in the
Coulomb gauge by a complex vector field

a=(a)r=1,. a1 : R — €71

(D The total charge of the i*P particle is given, up to a dimensional constant, by
f]Rd @pi(z)dz € R. Therefore, our discussion includes as well the electrodynamics of

charges that are globally neutral, but with a nontrivial charge distribution, like for ex-
ample a water molecule.
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Thus the Hamiltonian of the Newton—Maxwell system takes the form

(1.1)  H(p,q,q)

n d—1
— Z 2;, (pi — Ai(qi,a))Q +Vig) + Z/ ax (k) |k| ax(k) dk
‘ ’ A—17/R?

Here

p=1,....pn) ER™, q=(q1,....q,) € R™

and V is the smeared d-dimensional Coulomb potential
(1.2) Vig) = Z wij(gi — q5),
1<i<jsn

such that

(1.3) T gPix ——5 *¥j

where g > 0 is a suitable (dlmensmnal) constant. Here we set
(1.4) w(k) = |k, keR%

In this paper we will require minimal mathematical assumptions on the
potential V' that therefore could be different from the electrostatic potential
(1.2) above, and on the Fourier transform of the ;. See hypotheses (Ag)-
(A7) and (Agg)) below. The electromagnetic vector potential A;(g;, o) € R?
smeared by the charge distribution ¢; is defined by

(1.5) (qu @)
ex(k)

1/Rre /2K

|
Mm

(Xz(k) ax(k) e 27ik-q; +xi(k) a@x(k) e —27ik- q‘)dk

>
Il

where

is an O.N.B of R¢ and
(L6) i(k) = 7 [] (k) = / ik () da.
R4

Let us recall that the scalar potential is not a dynamical variable in the
Coulomb gauge. Moreover, we denote the components of the vector poten-
tial by

Ai(qi7a) = (A;/(QMO[))V:l,...,d.

ANNALES DE L’INSTITUT FOURIER



QED 2% cED 7

The Newton—Maxwell equations of motion read as:

(17&) atpz = mi(pl - AZ(qZ,Oé)) . tiAi(qZ'; Oé) — VQzV(q)7
(1.7b) Orq; = mi (pz' — Ai(qi,a)),
(1L76) D (8) = o (8 =3 - Xiz(ffz; (pi—Ai(gir @) - ex (k) €727k

=1

Consider respectively the following weighted L? spaces $7 and $7 with the
norms

i1 1/2
||a||50=<2 / |k|2aax(k)2dk‘> ,
=1 /R?
d-1 1/2
s = (Z | sy Oé/\(k)2dk> ,
A=1

and define the functional inner product spaces X = R4 x R x $° and
X7 =R x R x §° endowed respectively with the norms

n

lal%ee =D (ol + lail?) + llall3,
i=1

(1.8)

n

lull%e =D (pil® + lail?) + el

i=1

with v = (p,¢,a) in X7 or X?. The spaces X° with the above inner
product are always complete, and thus Hilbert, while X9 are complete
only for o < %. Let us remark that with the above notation, the p; and ¢;
are d-dimensional vectors. Throughout the article, we will use indifferently
the canonical identifications,

X° = 00 x §°
X7 = @dn % j:)o
implemented by the complex structure
z=q+ip,

where i denotes the imaginary unit. Note that $° = L?(R¢,C%!) and
X0 = X0 =% x $°.
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1.2. Pauli-—Fierz Hamiltonian

The formal quantization of the above Newton—Maxwell system gives the
so-called Pauli-Fierz model of non-relativistic quantum electrodynamics
that we recall below. The Hilbert space of the quantized particles-field
system is

A = L*(RI") @ Ty (9°),

where Fs(ﬁo) denotes the symmetric Fock space over °. Let p= (D1, . . ., Dn)
and ¢ = (q1,...,Qn) denote the particles momenta and position operators,

Di = —ihVy,, g = ;.

The h-scaled annihilation-creation operators for the field are defined for

anyf: (fl?"'afdfl) Eﬁo as

d—1 d—1
o) an=> | HEa®dea (=3 | SEak)dk,
A=1 A=1

with @, (k) and @} (k) are the annihilation-creation operator-valued distri-
butions satisfying the A-scaled canonical commutation relations:

(1.10) [ax(k),ax(K")] = ho(k — k') dxn -
With these notations the field Hamiltonian is given by

d—1
(1.11) Hf:Z/ k| @ (k)ax(k) dk
A=17R

and the smeared quantum electromagnetic vector potential is defined as

~ 2mik-Gi |\, (1) 5 —2mik-G;
(Gd Z /R \/QTk (k) dn (k) 7R85 s (k) a3 (k) @ ) dk.
Here, V and X; are respectively the same potential and form factor as for
the Newton—-Maxwell system. In particular, y; is the Fourier transform of
the i*® particle’s charge distribution ¢; and (e,\(k))A:LMdil are the above
defined polarization vectors satisfying, for almost all k& € R? and for all
AN €{1,...,d— 1}, the identities:

(112) kﬁ)\(k):() and e,\(k)'e,\/(lc):d,\,,\/.

The Pauli—Fierz Hamiltonian of n-particles interacting with the quantized
electromagnetic field takes then the form

n

. 1
(1.13) Hp=>" o

i=1

(P — Ai(@, )" + V(@) + Hy.

%
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It is known that the above Pauli-Fierz Hamiltonian is self-adjoint under
convenient assumptions on the form factors x; and the potential V' (see
Section 3 for more details). For convenience, let us also define the non-
interacting Hamiltonian,

the A-scaled number operator

(1.14) No=> / @i (k)ax (k) dk,

=1/ R?

and the weighted modulus momentum operator defined for o > 0 as

d—1
(1.15) dr(|k| ):)\Zl/]Rd|k| ak (k)ax(k) dk.

1.3. Wigner measures

In order to establish the Bohr correspondence principle between quantum
and classical electrodynamics it is useful to use the very general concept of
Wigner (or semiclassical) measures, and not to restrict to coherent states
only. The semiclassical techniques of Wigner measures are a well-known
tool that efficiently relates the quantum and classical states while taking the
effective limit 7 — 0. In particular, Wigner measures have been extensively
studied in finite dimensions (see, e.g., [50] and references therein contained).
Moreover, such concept has been extended to infinite-dimensional phase
spaces in [8] and applied to some fundamental examples of many-body and
quantum field theories in [4, 5, 9, 10].

In the sequel, we denote by (X ) the set of all Borel probability mea-
sures over X? and recall that a density matrix on J# is a normalized
non-negative trace class operator on 7.

DEFINITION 1.1 (Wigner measures). — A Borel probability measure
p € P(XP) is a Wigner measure of a family of density matrices (Qh)ﬁe(o 1
on the Hilbert space s if and only if there exists a countable subset

& C (0,1) with 0 € & (the closure of &) such that for any £ = (p,q,a) € X°:

(1.16)  lim Tr Wi (27q, —27p, vV27a)| = / 2Rl u)x0 4y (y).
h—0 X0

he&

Here, Wy ( -) depends on the parameter i and denotes the Weyl-Heisenberg
operator defined according to (4.2), (4.4) and (4.6).

TOME 0 (0), FASCICULE 0
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DEFINITION 1.2 (Wigner measures set). — The above definition extends
to any family of density matrices (gh) s indexed by an arbitrary subset
# of the interval (0,1) such that 0 € . (the closure of .#). In such case,
we simply denote the collection of all the Wigner measures of (0s),_ , by

(1.17) M(op, € I).

Note that in general the set of Wigner measures .#(gz,h € (0,1)) is
not empty if a mild assumption on the density matrices is assumed (see
Proposition 4.1). Existence of Wigner measures is a consequence of Weyl
commutation relations, Prokhorov’s theorem and Arzela-Ascoli’s theorem
(see [8, Theorem 6.2]). Moreover, by extracting subsequences one can al-
ways choose a family of density matrices with a single Wigner measure,
i.e., there exists .# such that (1.17) is a singleton.

Now, the convergence of quantum electrodynamics towards classical elec-
trodynamics when 4 — 0 can be reformulated as the formal commutative
diagram:

i

o gtﬂﬂ( D e%tﬂﬁ

O ! on(t)
h—0 h—0
. @0: () He

Indeed, consider a family of density matrices (o0n)ne(o,1) at time t = 0;
then its time evolution satisfies

Qh(t) — e—%tﬁh on e%tﬁﬁ .

In order to link the quantum and classical dynamics as A — 0, it is enough
to show that if the family of states (on)se(o,1) admits a single Wigner
measure Lo, i.e.,

A (e, 1€ (0,1)) = {no},

then the family (Qh(t)) He(,1) admits a unique Wigner measure at any time

t € R given by the push-forward measure

(1.18) e = (P¢) 4 o,

with ®; the flow that solves the classical Newton—Maxwell equation. In
other words, the right-hand side of (1.18) denotes the image measure or

ANNALES DE L’INSTITUT FOURIER
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pushforward measure defined for all Borel sets B of X7 as

(®4) 4 o(B) = po((®4)~(B))-

It is worth noting that Bohr’s correspondence principle scheme was success-
fully proved to be true for the Nelson model with Yukawa interaction, in
a different scaling (in which the particles are many but remain quantum),
both with and without ultraviolet cutoffs in [4] and [5], respectively.

1.4. Main results

The two ingredients to be chosen in the quantum and classical systems
(1.1)—(1.13) are the potential V' and the form factors y;. Although V and
X; are physically related through the charge distributions ¢;, we prefer to
consider a more general context by picking the following hypotheses, for all

1=1,...,n

(Ap) V € 62(R™ R),
(A1) w ' xi € L*(RY),
(457) Wi x; € LA(RY).

The first condition means that V is a bounded 42 function with its first
and second derivatives bounded. In our analysis the relevant range for the
parameter o in the assumption (Ag")) is the interval [, 1]. Notice that for
o,0 € [%, 1] such that o > ¢/, one has

(A — (AL,

In particular, (Agl)) holds true if we assume (Ag’)) for some o € [3,1).

Moreover, by interpolation if y; satisfies (A;) and (Agf)), then for all —1 <

)\ég—o

Wt x; € L2(RY).
Our first result concerns the flow of the Newton—-Maxwell system of equa-
tions, and reads as follows.

THEOREM 1.3 (Generalized global flow). — Let o € [%,1] and assume

that (Ap), (A1) and (Aga)) are satisfied. Then for any initial condition
ug € X7 there exists a unique global strong solution u(-) € €(R,X7) N

TOME 0 (0), FASCICULE 0
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€(R, X°~1) of the Newton—Maxwell equation (1.7). Moreover, the gener-
alized global flow

D, X7 — X7

(1.19) uo — u(t)

is Borel measurable.

The above theorem is a consequence of a uniqueness property for the
Newton-Maxwell solutions, proved in Proposition 2.6, combined with the
existence of global solutions derived from the Pauli-Fierz quantum dynam-
ics by means of the general theory in Appendix B. Its proof, provided in
Section 5, is quite different from standard nonlinear fixed-point arguments
which require the charge distribution to be more regular. We also prove,
by the same method, further quantitative propagation estimates satisfied
by the Newton—Maxwell flow in Proposition 5.7.

Let now (0r)nre(o,1) be a family of density matrices on the total Hilbert
space ¢ of the particles-field quantum system, i.e., gy is a normalized non-
negative trace class operator on . The main assumptions on the family
of states (0r)ne(0,1) are:

(58 3Co>0,¥he (0,1),  Trlon(Hy+1)°] < Cy,
(5 301> 0,¥he(0,1),  Trlon(Np+q?+1)°] <O,
() 3G >09ne(0.1),  Te[odl(k*)] < Co.

Under assumptions, we can prove the Bohr correspondence principle.

THEOREM 1.4 (Classical limit). — Let § € (0,1], o € [3,1] and we as-
sume that (Ag), (A1) and (Aéa)) are satisfied. Let (0r)re(0,1) be a family of
density matrices on J satisfying the assumptions (S((f)), (S’gé)) and (Séa)).
Assume that for some probability measure o € PB(X°)

(1.20) Mon, € (0,1)) = {puo}-
Then for all times t € R,

M (e~ RN g it 0 i e (0,1)) = {ue},
with p; € P(XO) satisfying the following statements:

(1) ¢ is a Borel probability measure on X,

(2) ¢ is the push-forward measure of g by the generalized flow ®; of
the Newton—Maxwell equation constructed in Theorem 1.3, i.e., for
all Borel subsets B of X7, and allt € R,

(1.21) 1e(B) = (@) po(B) = po (%) (B)).

ANNALES DE L’INSTITUT FOURIER
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Moreover, in the general case where (1.20) is not assumed the statement
below holds true for all times,

(1.22) M(e™“"Hng, it ne (0,1)) = {(@4) 4 o, o € M(on, he (0,1))}.

Remark 1.5.

(1)

(2)

The case ¢ = 1 corresponds to the weakest requirement for the
form factors y; while for o = % the assumptions on the quantum
states (Séo)) are the weakest.

The assumption (1.20) means that for any sequence (%i,)nen with
h, — 0 and any ¢ € X°, the equality (1.16) holds true with the
unique measure pg on the right-hand side.

The statement (1.22) can be complemented by the fact that, given
o € M(on, i € (0,1)) and the associated family (gz)ree that
converges to it, then (Qh(t))ﬁeg converges to (®;) 4 o for all ¢ € R.
Convergence here is according to (1.16) and Definition 1.1.

Most of the analysis in this article is devoted to the case § = 1
and (1.20). The proof of Theorem 1.4 in the general case is given
only at the end of Section 5 (Proof of Theorem 1.4 in Section 5).
Examples of density matrices satisfying the above hypothesis (S(()é) )—
(SSU)) include coherent states, product states or superpositions. See
Section 4 and [8].

2. Newton—Maxwell equation

2.1. Uniqueness of solutions to the Newton—Maxwell equation

In this section, we prove a uniqueness result for solutions of the Newton—
Maxwell equation (1.7) on the spaces X° with o € [£,1]. Note that from
now on we will refer only to V and x;, i = 1,...,n, satisfying the hypoth-

esis (Ap), (A1) and (Aga)), and no more to the charge distributions ¢;s. In
particular, the following lemma justifies the assumption (A4g) on the poten-
tial V' by showing it to be true for the electrostatic potentials between the
charges.

LEMMA 2.1. — Let o € [3,1] and assume that (A;) and (Aéo)) are
satisfied. Then the potentials w;j, i < j = 1,...,n, defined by (1.3), belong
to 62 (R%).

TOME 0 (0), FASCICULE 0
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Proof. — First, the expression (1.3) is well defined as a tempered distri-
bution. Hence

ﬁil iﬂ71 ; iXi
oy :g[gfl[wwu :gy [90]2 [SOJ] :gﬁ: XXJ ,
w

where .# denotes the Fourier transform on .#”/(R%), and .# ! its inverse
(see also (1.6)). Now, the assumption (A;) yields that w;; € € (R?) as
the Fourier transform of an L' function. Repeating the same argument for
the derivatives one proves the result. O

Let us now prove some preliminary lemmas, concerning the electromag-
netic vector potential and its derivative.
LEMMA 2.2. — Let o € [3,1] and assume that (A;) and (Aéa)) are
satisfied. Then
(1) ¥ (g,a0) e R x %, Vie {1,...,n},

d—1)

[l 5o,
L2
(2) ¥ (g,0) e R x §1/2 Vie{1,...,n},
<],

Proof. — By the Cauchy—Schwarz inequalities with respect to both A
and k:

el

2mik-
i(g, )] < Z/d W (Xi(k)ex(k) ax(k) €™ +h.c.) dk
IETINTRE
2 — l[evll 50
(; 2(4.1 LZ) )
< or

[N

L STIIVTE
2 ! Al &1/2.
(Z)l.) et

LEMMA 2.3. — Let o € [3,1] and assume that (A;) and (Agg)) are
satisfied. Then for allv =1,...,d:

(1) V(g,a0) e R x %, Vie {1,...,n},

|V A q, \/—Hw1/2X2||L2 Hanfﬂo

O
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QED 2% CED 15

(2) V (¢,a) € R xf’;l/?,we {1,...,n},

‘V Al (g, )| < v/2(d - 1 HXZHLz ||O‘H531/2

Proof. — By the Cauchy—Schwarz inequality:

VoAl (g, @)l < Z ” 2|k (R(R)E5 (k) an (k) €277%0 +h.c.) dbk

d-1 ) 3

(3 Qle/?xium) ol
A=1

< or
1

dfll ) 2

2 (Z 2|‘Xi||L2> Ha||51/2,
A=1 -

LEMMA 2.4. — Let o € [3,1] and assume that (A;) and (Aéo)) are
satisfied. Then for all ¢1,qo € R¥ andv =1,...,d:

(1) YV ay,as GﬁO,ViE {1,...,n},

|Ai(q1, a1) — Ai(ge, a2)]
Xi

vwily
(2) VOLl,OZQG.VJU,V’L'E{l,...,TL},

<

] lon — aallgo + lg1 — g2l [|[Vwxil| .2 lazllso-

|V¢I1Azl'j(q1»al) - vq2AzI'/(q21 a2)|
< Vol 1o len = azllso + lar — aal|| w2~ xi| 1. llaz]l 50

Proof. — Estimating the left-hand side of (1), the Cauchy—Schwarz in-
equality yields:

’Ai(qlaal) - Ai(‘]27042)|

<di:1/ ‘Xi(k)

TS ke | VIR
d—1

<

2.

Xi

Vells

(|0117)\(k) _ 0627)\(]6)‘ + |(e2m'k-ql —e2“£k'q2)a2)\(k‘)’) dk

(lar (k) — ag x(F)[ + [kl g = q2f lag A (F)]) dk

~

. lon — cllgo + g1 — g2l || Vx| 2 ezl so-
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A similar argument gives

|vq1AI'j QI»Oél) - quAI'/(q27a2)}
<Z/ VI G )] (aan(k) — aza(®)] + [k g1 — g2l Jaza(B)]) d

S [[Vexil| go llar = azllso + la1 — @l w2 x| 2 ozl 5o O

The Newton—Maxwell system (1.7) is a semi-linear PDE of the form

(1) {iu(t) = £u(t) + F(u(0),

u(0) = wuyg,
where ug € X7, t = u(t) = (p(t), q(t), a(t)) is a solution,
L(u) = (0,0, —ilk|a)

is a linear operator defined for all u = (p,q,a) € X1 and F is nonlinear
and given by

@20) Py = o (5= Ailar0)) - VoAl e) — Vo V(o)
(2.2b) F<u>qi=m%(z Agi ),

- 1 X’L k a:.a)) - € e—2ﬂ'ik-qi
(2.2(3) Zlﬁ\/m—k Az(Qu )) )\(k) :

Here the notations (-),,, (-)g and (-)a, refer to the components p;, g;

and ), respectively. We note also that F' contains a linear part in (2.2b).
For convenience, given a finite collection of functions {f;,..., fn}, all

belonging to the same Banach space X, we adopt the following notation:

7l = o[l

The vector field F' representing the Newton—-Maxwell nonlinearity has the
following property.

PROPOSITION 2.5. — Let o € [4,1] and assume that (Ap), (A;)

and (Aga)) are satisfied. Then the nonlinearity F' : X — X is a con-
tinuous vector field which is bounded on bounded set.

ANNALES DE L’INSTITUT FOURIER
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Proof. — One verifies, thanks to Lemmas 2.2 and 2.3 that F maps X /2
into X! and is bounded on bounded sets, with the estimates below holding
true:

(2.3a)  F(u)p, < (Ipl+ llll50)

wxill p2llello +sup VeV (g)l,
q

(2.3b)  F(u)g Slpl+ || == 2HO¢||530,
L

230)  [F@elg < Vo], (p| n

2| 1o,
||a||ﬁo).
57)0

X
= + =
CE e

In order to prove continuity of F for o € [%,1], it is enough to show the
continuity of the following three maps over R4 x $7, for any i = 1,...,n:

(1) (¢,0) = A7(q,0) € R

(2) (¢,@) = V447 (q,0) € R

3) (¢,0) — Xi(k) —2mik-q €.

vaul
Indeed, continuity of the maps (1) and (2) is a consequence of Lemma 2.4
while the map (3) is continuous thanks to the dominated convergence the-
orem and to the bounds,

(2.3d) HF(U)OC,\”fJO S

2

Xl(k) e—27r£k:~q1 _Xl(k) e—27r£k’~q2

vid L4

2
2
g/ ‘XZ | ’ —2mik-q1 _6727'['[:’{3'(12 dk,
|k:
2
Xl(k) 67271116 q1 7Xl(k) 6727”16 q2
VIE N .
R . 2
< / <|k|071/2‘xi(k)| ’6727nk:-q1 7672mk~q2 ) dk,
Rd
. 1 3 1
since 0 — 5 < 5 —o for o € [5,1]. O

Let I be an open interval containing the origin. We are interested in
strong solutions u of the Newton—Maxwell equation (1.7) or equivalently
(2.1) such that

weCI,X)NEH (I, XY,

TOME 0 (0), FASCICULE 0



18 Zied AMMARI, Marco FALCONI & Fumio HIROSHIMA

with o € [4,1] and (2.1) is satisfied for all ¢ € I. In particular, these

solutions verify the following Duhamel formula for all ¢ € I,

(2.4) u(t) = Do (t)u(0) + /0 Do(t — s)F(u(s))ds
where Dy(-) is the free field flow defined as
(2.5) Do(t)(p g, ) = (P, e ).

PROPOSITION 2.6. — Let ¢ € [%,1] and assume that (Ap), (A;)

and (Aég)) are satisfied. Consider an open interval I containing the origin
and let uy,us € €(I1,X7) be two strong solutions of the Newton-Maxwell
equation (2.1) such that

(V51 (O) = U2 (0)
Then uy(t) = ua(t) for allt € I.
Proof. — For any compact interval J C I, note that
M= max (mJaX Huz(t)||xa) < 0.

Using the Duhamel formula (2.4), one finds that for all ¢ > 0,

[[ur (8) — ua(t)]| xo < /0 [F(u1(s)) = F(ur(s))l| xo ds.

The following estimate holds true (we drop the s-dependence in the right-
hand side):

|(F(u1(5)) = Plus(5))),,

i

d
Z{ Py — P5.| + |AY (g1, 01) — AY (q2,0, 02)|) [V, AY (g2,6, 2)|

v=

=

+ (|pg,z| + |Az‘u(q2,i7 a2)|) ’quiAzy(ql,i’ 041) - VqLiAzy(ql,zﬁ 041)‘}
+ |V¢Z1,iV(Q1) - qu,iv(qQ)‘

< Ipr(s) = pa(s)| + lar(s) — qa(s)] + [aa(s) — aa(s)] 50,
by Lemmas 2.2-2.4. Similarly,

|(F(u(5)) = P(ua(s))),,

N Z{‘plf,i - pg,i| + | A7 (q1,i,01) — A?(Qz,z‘,%)\}

S p1(s) = p2(s)] + |a1(s) — ga(s)| + [ (s) — @2(s) |50
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and

| (Flur(s) = Fus(s)),,

YJO

n
S Z{|p1,i — P2l + [Ai(qr a1) — Ai(g2,i, a2)| + lqu,i — 612,z'|}

< 1p1(5) = p2(s)] + a1 (5) — 02(6)] + flan (5) — xa(s) -

< ; [p1(s) = p2(8)] + lg1(s) — qa(s)] + [a(s) — az ()l g0 ds

and so Gronwall’s inequality yields the result. O

2.2. Local well-posedness

We indicate here the main difficulty in proving the local well-posedness
in X' of the Newton-Maxwell equation by means of a standard fixed-point
argument. Take (po,qo, ap) € X! an initial data, T > 0 a given time and
R a positive real number. Consider the natural complete metric space

B= {u 0,11 swp uls) ~ (oo™ )l < R} .
se[0,T

So, the question is to prove the existence of a unique fixed-point for the
mapping
T:EF— F

ur— 7(u),

defined by

7(u)(t) = (po, qo, e~ ao)+/0 (F(u($)p, F(u(8))g e = F(u(s))a) ds,

where F is the vector field given in (2.2). Firstly, one has to choose T' >
0 small enough such that 7 maps FE into itself. Secondly, to prove the

TOME 0 (0), FASCICULE 0
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contraction property for 7 it is sufficient to establish the following inequality
for all uy,us € F,

T
(2.6) /OIIF(ul(S))—F(U2(8))HX1d8

<TC(R) sup |ui(s)—u2(s)|x1,
s€1[0,T
with C'(R) is a constant depending essentially on R and T has to be cho-
sen small enough such that TC(R) < 1. Now, the estimate (2.6) requires
essentially the bounds

X3 (e727r£k-qj,1 (s) _ 67271'5’6‘(1_7’,2(5))

V2w

to be true while we only have w'/ 2Xj € L?. Hence the argument can not
be closed in this way and probably more refined analysis is needed. In
particular taking advantage of the time oscillation on front of the field
component could be helpful; but even in this case it is unclear to us how
to close the estimates.

Finally, examining the vector field F' in (2.2), one notices that a small
variation on the positions of the particles leads to a large variation of the
fields in the L?-norm whenever we assume only w!/2—¢ Xj € L? for an arbi-
trary small £ > 0. In some sense, this indicates that the assumptions (4;)—
(Agl)) are thresholds for the Hadamard stability of the Newton-Maxwell
equation. We believe that these questions of fixed-point and stability are
interesting in themselves and relevant for classical electrodynamics and we

< sup |Qj,1(3)—Qj,2(3)|
$Hi s€[0,T]

hope that our work will stimulate some interest on them, see [54] and [56].

3. Pauli—Fierz Hamiltonians

In this section, we review some features of the Pauli-Fierz Hamiltonian
and prove uniform estimates that are useful in the analysis of the classical
limit.

3.1. Self-adjointness and uniform estimates

Recall that such Hamiltonian describes a system of many quantum d-
dimensional extended charges (d > 3) interacting with the quantized elec-
tromagnetic field in the Coulomb gauge, see e.g. [59]. Moreover, it is known
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that the Pauli-Fierz operator H 5 in (1.13) is essentially self-adjoint under
suitable regularity assumptions on the charge distributions. For various ap-
proaches to the study of self-adjointness for Pauli-Fierz-type Hamiltonians,
see for instance [29, 37, 38, 39, 51].

THEOREM 3.1 ([39]). — Assume (Ag), (41) and (Aél)). Then Hy is
self-adjoint on D(HY) = D(p?) N D(Hy).

We recall some useful inequalities on @f and Vil £. Suppose that

I1fi/V@llL2 < oo, j=1,...,m.
Let ¢ € D(H}"?). Then

veD H@(fj) nD | [[a ()

and there exists a constant ¢ > 0 depending only on || f;/y/w]| L2 such that

(3.1) [Tawe| < eldyl,
j=1

(3.2) [T@ (e < cli@e+1)m2y).
j=1

LEMMA 3.2. — Assume (Ap), (A1) and (Aél)). Then there exist three
constants ¢,C,~y > 0 independent of h such that for all h € (0,1) and for
all € D(HY),

(3.3) ol (Hr + )9l < |(H} + V|| < Cll(Hp + 7).

Proof. — We set Aj = Aj(Z]\j,a), P = ]/)\j, HO = ﬁ%, Hf = ﬁf7 and
H=H # for simplicity, and we assume that 1 is sufficiently smooth. By
Theorem 3.1 and the closed graph theorem we obtain (3.3), but it is not
clear how ¢ and C depend on A. Hence we shall prove the lemma from
scratch. In the proof below constants ¢; are independent of # € (0, 1] and de-
pend at most on the L?-norms of x; /w, x;/v/w, Xi and /wx;. We prove (3.3)
for the case of V' = 0 in what follows. In the case of V' # 0, (3.3) can be
also derived straightforwardly from (3.3) with V = 0, since V' is bounded.

First we show the second inequality of (3.3). We estimate both ||H1|?

2
and 37, H ﬁpwa . Using that A; is divergence free due to the Coulomb
gauge, we have the identity

(pj — Aj)*% = piv — 24;(p; — Aj)¢ + AT,
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and thus

P2 = (p; — Aj)2 + 24;(p; — Aj)Y — A%,
P30 < erlll(p — A)*0l1” + 1 A45(p; — AWl + |AT9[%).

‘We obtain that

14;(p; — Ajv|I?
< ca((p; — Ay, (He + 1) (pj — Aj)¢)
= ca((pj — Aj)%, (He + 1)) + co((p; — Aj)p, —[He, Aj]).

Note that [((p; —A;), —[Hr, A;]¢)| < esl|(p; — A9 (|| (Hi+1)"/?¢||. Then
145 (pj = AVIP < ealll(ps — Ap)*WI + [I(Hr + 1)l* + [[¢]%).-
Since from (3.1)—(3.2),

1AF¢I < el (Hr + Dy

follows, we conclude that

j=1

1 2
%j(pj—Aj) P

2
+ I(Hf+1)¢|2+||¢|2)~

Next we estimate ||H1||2. We have

2
1
(3.5)  [[HY|* = Z%(pj*Aj)zi/”rHﬁ/J
j=1"""
- 1 2 ’ 2
= || 2 g, s =A%)+ [1Hr
j=1

+ 2Re <Z ﬁ(pj - Aj)2¢,Hf¢> .
J

j=1

Since we observe that commutation relations

pj — Aj,pi — AsJ =0
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for any ¢ and j, we have

n 1 2 2
2,0
1
Z T 45) 2 + Z 2m] sz
n 1 2
Z T — A%

For arbitrary € > 0 and § > 0 we see that

o
j=1

n

"1 1 1
< - _A 2 - - H 1 1/2 2
6;:1: o 105 = ADWIP 237 5 N+ 1) 2|

n

"1 1 1
< —— (p; — ANV + =Y — [ 8||Hso||?
6; g N0 = AUIP + 237 ( | Hey? +

n

"1 1 1
< —— (p; — ANV + =Y —6||Hsv||?
e]§:1j 7o 105 = 4% +4€j§:1: rtlieadl

= A%, (pi = Ai)*)

1 2 2
IO+ 11?)

I 1 (1 )
tel g (1)

j=1"""

Taking ¢ = 4¢*/ 37", Wv we then have

|
ZT — APl + 1)y

n

1
<ed 5—Il(ps — AWl + el Heoo|?

j=1"""

1 1 1 = 1
+4?_22m‘ 166222m'
j=1""" g=1 """
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Hence for arbitrary small € > 0,

(3.6) Re <Z %(pj - Aj)zz/z,wa>

=" {(py — Ay Hilp; — A)0)
F 3 o Rel(p; — Ao [Hr —Al)
j=1 """

1
> =) gl = A)WIIHe + 1))

j=1
"]
> =€) 5 —lp— A1 — el Hep||? = erlof|>.
— m;
Jj=1
Here
Cg Zn: 1 C% - 1 1
cr = —
T 4e £=2m; | 1662 &= 2m;
Jj=1

By (3.5) and (3.6), there exists cg > 0 such that

n 2
1
B7) HYP +eollvl® > es | Y Nl5—(p; — A0 |+ [1Hev?
g=11""
Then combining (3.4) and (3.7) yield
2
I(H® + 1)yl|* < 2 i: L p2y)| + 2 Hy)?
= = 2mj J
n 1 2
< C10 Z S—piY|| + I Hryl?
= 2mj
n 1 2
<en [ Y %(pj = A%\ + [ Hewl? + [
g=11""

<cr([HY | + 1¢17) < ewsl|(H + )9,

It finally follows that

(3.8) I(H® + D)9l < easl|(H + )¢
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Secondly we show the first inequality of (3.3), it is however easier than the
second inequality. We have

n

|Hy|| < | H | + —Z ]w+2 A%

j=1
and
i Aj Pt A3l < L H,
=2 A+ D g AR e | |30 5 pi | +IHe + ]
Jj=1 j=1 j=1
Then it follows that
(3.9) G+ 1)l < exs | (HO + 1)

By (3.8) and (3.9) we see that

éll(ﬂﬂL Dyl < [(H® + 1)l < eaal|(H + 1)3)|

and the proof is complete for V = 0. g
From Lemma 3.2 we can immediately obtain a form version of inequali-

ties. Suppose that f’jﬁ +a > 0 and ﬁ% + b > 0 for some a,b € R.

COROLLARY 3.3. — Assume (Ag), (A1) and (Agl)). Then there exist
¢,C > 0 independent of i such that for all h € (0,1) and for all 1y € D(HY),

(3.10) c(ip, (Hp + a)p) < (¥, (Hy + b)) < Cly, (Hy + a)).

In particular
(11 el(Fn+ )20l < I+ 020 < CI(HR+ )2y
for ¢ € D((H9)Y/?).

Proof. — The proof for (3.10) is similar but even simpler than (3.3). To
show (3.11) we take an approximation. (3.11) is true for ¢ € D(ﬁ%) Let
¢ € D((H9)'/?). There exists a sequence ¢, € D(H?) such that v, —
1 and (ﬁ%)l/%ﬁn — (ﬁ%)1/2w as n — oo. Hence I?I,li/zwn is a Cauchy
sequence. By the closedness of H ,li/ ® we see that ¢ € D(}AI }1/ 2) and the
inequality of the left-hand side of (3.11) follows. The inequality of the
right-hand side of (3.11) can be similarly proven. O
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3.2. Regularity properties

In order to understand the behavior of the Pauli-Fierz dynamics as
h — 0, it is convenient to control the expectation of some suitable quan-
tum observables uniformly in f € (0,1). Namely, we consider the number
operator (1.14), the modulus momentum operator (1.15) and the squared
position operator g2, and establish the following regularity propagation
estimates for the Pauli-Fierz dynamics. These estimates prove to be very
useful in Section 4.

3.2.1. Number estimates

The aim of the present subsection is to study the propagation in time
of the photon number operator estimates on a suitable dense domain. The
commutation relations of Ny with ax(f) and @ (f) have a simple form:

[Nu,ax(f)] = —hax(f),
[N, ay(f)] = has(f).

We shall characterize a dense domain D C D(JV #) such that for all ¥ € D
and for all t € R,

W(t) = Un(t) = e~# 84y € D(Np).

To do that, it is technically convenient to introduce a bounded and positive,
approximation of Ny that strongly converges monotonically to it:

Nﬁ((s):ﬁﬁe_éjvh, 0<d< 1.

It is straightforward to verify that on their dense common domain of defi-
nition, HY and N () commute for all § > 0:

[ﬁ%a Z/\}ﬁ(é)] =0.
Let ¢ € D(HY), and define
M(t) = | Nu(0)i(t)].

M(t) is finite for every ¢ € R, since Nj(8) is a bounded operator. In addi-
tion, the map ¢t — M (t) is differentiable, with

i . . PN

(3.12) M(t) 7 (<J/\\7h(5)ghw(t), Ny(8)1h(t)) — (Ni(8)h(t), Nn(0) Hrt)(t))).
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In light of (3.12), let us introduce the densely defined sesquilinear form
As,p 2 HE x A — C defined by

as,n(9,¥) = %(<ﬁh(5)ﬁﬁ¢,ﬁh(5)¢> - <Nh(5)¢7ﬁh(5)ﬁhw>)a

for any ¢, € €5°(R¥) @y, where ', is the subspace of the Fock space
Is (5'30) composed of vectors with finitely many nonvanishing components.
Let us omit the explicit dependence on § and A of the sesquilinear form,
ie., g =gs, e It is possible to rewrite q by using the commutator between
Ny(8) and Hy on €5°(R™) @ Dgy:

o~ ~

a(e, ) = %(<[1\7ﬁ(5),f1n}¢, Nu(8)) — (N#(6)9, [Nx(8), Hrl®)).

LEMMA 3.4. — Assume (Ap), (A1) and (Aél)). Then there exists a con-
stant C > 0 such that for all i € (0,1) and ¢, € €§°(R™™) ® [y:

la(e, o)l < CUIEHG + DN @] + [Nl (Hy + 1e]l)-

Moreover, there exists a constant C' > 0 such that

la(e, ¥)|| < " (I(Hp + 1)l |INs()% ]| + | Nu(@)ol| | (Hp + 1))

Proof. — In this proof C' denotes a constant independent of & and §. The
commutator can be computed explicitly as follows

n d
[N4(6), Hnl = ;zz ), DJID), + D} [N 4(5), D)),

where D7 = Dj — A; is the covariant derivative. In addition,
[N#(6),DI] = —i(AlL;, + NuILj . (6)) e *Nn,

where II; is the conjugate momentum of A;, i.e.,

I; = LZ/ (va(k, @;)as (k) — Oa(k, 3;)ax(k)) dE,

with
~N\ __ Ek(k) 2mik-G;
U)\(kaqj) - \/mXJ( )
and
d—1
(3.13) (5):&2/ (ox(k, @) (e~ =)@ (k) — oa(k, §3) (" —1)ax (k) dk
A—1/R?
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The above formula (3.13) follows from the commutation relations
e @ (N] =ax((e™™ ~1)f)e™"r,
[N ()] = an((e" ~1) e ?Vn

The operators II;(§) are not symmetric, but closed on a suitable domain.
Therefore,

[~

= % > (05 + NI (8)) eV D/ 4 D7 - (I, + NaTl (8)) e =037

1S ) . )
5Z(I{JFI;H;,HZL),

where N 1 is the standard A-independent number operator, and
U =TI, e *Vr.DJ, I = NyIL;(5) e V% D7,
I =D/ T e N, U =D/ - NyT1;(5) e Nn
The terms I{?Ii are estimated separately.
H =e Vr Il DI 4 A;(6) eV D7,

(1) (2)
Il Il

where A;(8) = —II,(6). We note that
Y < T, - DIy
Now observe that
ITL; - py|l < ClI(HR + D¢,
ITL; - Aol < Cll(HY, + D)wll.
Combining the above estimates, we get
Vo] < ClI(HS, + 1)l

where C does not depend on § and h. To complete the estimate for I{,
we estimate 152). Let (E))\cgr+ be the spectral measure of a positive self-
adjoint operator T evaluated on 1. Then we see that for all « € %N,

)
||Ta€_tTw||2 _ / )\2a6_2t)‘dE)\,
0
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and note that 220" o2t < 1 for all A € R,. Therefore

(2a)!
2a)!
7o) < 2
(2t)
follows for any ¢ > 0. In particular we obtain that
~ N 2a)!
3.14 Na —hoN, g (
(314) IR < s
=~ « \J 204)'

3.15 Ni+1) e MWD (2a)t
(3.15) 15+ 1) I < s

As a result we have
|4;(8)e=N - Dy
<2l /Volle™Va(le™ — 1] + e — 1))

d
X (N1 + D)2 R0 S 7Dl g

p=1
d
e — 1] 4 |e~ ™ — 1] .
< V2|x;/Vwlle™Vh > D7l
vV ho st
Note that
+£ -1
(3.16) sup [e= 1] <e—1.
ce0] &

Since Zi:l D] < c||(ﬁ% + 1)9|| with some ¢, we see that

14;(8) e=*Nm DI < Cy(h, 6) || (HY, + D).
Here
—1| + |e~M0 —1|
ho

ho
Oy (h ) = WBeVZ| x; /vl 18
< 2V/ace(e — 1) x;/Val |
Therefore,
1] < C(ES + 1))

Then, we estimate I; for this term we need the bounds (3.14) both with
a=1and a = % Again, let us split it in two parts:

I, = NiIL;(8) e *¥n.DJ = Ny e o 11,(6) - D/ + N, AP (8) e 00 DY,

i 1
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where
AP —LZ / (o (b 5) (1 =975 (1) = 9 (k.35 (L — ") 3 (1) .

Similarly to I1 , we obtain
IVl < Colh, 8)|(HY + 1))
Here

|0 —1| 4 |e~M0 —1|

Ca(h, 6) = 3v2d(||x; /vl + s /wll) 3

<3V2(e — Dd(llx; /vell + [Ixg /w])-

For If) one gets

19| < Cs(h, 6)|(HY + 1))

Here

—1)? 4+ (e —1)°

(h)?

Cs(h,8) = V3d||x;/ Vel " hV5 e
< V32e(e — 1)%d||x; /vl

Summing up, we have
51 < ClI(H + Dl
The estimate of Ij is easy, yielding
[l < ClI(HY + 1) =N || < CI/(HY + 1))l
Finally, we estimate
U = D7 NyIL(§) eV = DI - I (5)Ny e *Nr + DI - A(8) e N,

(€ )
I4 I4

Hence
ISl < 6(1Ix / Vel + s /wl)
x (| — 1] + |e™"® — 1))[|(H} + 1)Ny e 2Nn |
Ca(h, 8)||(H + D).
Here

[ 1] [ 1]
ho

Ca(h,8) = 3v2(lIx;/Vell + IIx; /wl)
< 6v2(e = D(IIx /vVwll + lIxi /wll).
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Estimating L(f)

is easier, and one gets
I < Ca (R, ) I(HR + D)y
Here

COs(h,8) = 6(Ix;/vell + s /wll) (1" =1] + ™™ ~1])
< 12(e = D(lxg/vwll + lIx; /wl)).-
It yields that
el < ClI(HS + DYl
Putting the results above together, we prove the lemma. O

With the aid of Lemma 3.4, we prove the following bound on M (t).

LEMMA 3.5. — Assume (Ay), (A1) and (Aél)). Then there exists a con-
stant C > 0 independent of § and h such that for any t € R,

M(t) < C(|(Hp + Dy* + M(2)).

Proof. — By Lemma 3.4, the domain of q can be uniquely extended to
D(Hp) x D(Hp). In particular, we have

IM(t)] = |a((t), ()] < Cl[(Hn + 1P| | Na(8)(t)
< C(I(Hp + D)3 |> + [INa(8)$(8)][*)-
Then the lemma is proven. O

Gronwall’s inequality then yields the sought result of propagation.

PROPOSITION 3.6. — Assume (Ay), (A1) and (Aél)). In addition, let
¢ € D(p?) N D(Hs) N D(Ny). Then e=%n ¢ € D(Ny).

Proof. — By Lemma 3.5, we have
M(t) = /0 "N(s)ds + M(0) < C /O "(M(s) 1 0)ds + M(0),
where 6 = ||[(Hy + 1)9]|2. Let M(t) + 6 = N(t). Then
M(t) < N(t) < c/ot N(s)ds + N(0).

Then Gronwall’s inequality yields
M(t) < N(t) < (Hﬁh((s)@/}H? +||(Hp + 1)]|2) e,
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where C' does not depend on # and 4. For all ¢ € D(ﬁh),
lim [Na(@)o@)|2 =lim [ A2e2MdE
i ¥4 @0) =ty [ e ap,
= léiilol(llﬁﬁ@)i/)HQ +[|(Hp + 1)p?) e

= (|Np| + [|(Hp + 1)) ?) e,

Hence by the monotone convergence theorem, it follows that ¢ (t) € D(Ny),
and

INa ()17 < (INsI + | (Hr + 1)0]?) e 0
It is immediate to see the corollary below.

COROLLARY 3.7. — Assume (Ag), (A1) and (Agl)). Then there exist
two constants K,C > 0 such that: for all h € (0,1), for all » € D(p?) N
D(H{) N D(Np), and for all t € R,

INwp ()] < K (INsll + [(HE, + 1)]l) e
Proof. — It follows from Lemma 3.2 and Proposition 3.6. g

3.2.2. Momentum estimates
The commutation relations of N;{T) = dI'(|k|*7) with @, (f) and a%(f) are
[N, 8x(1)] = ~hax(k* 1),
N3 5] = has (k17 ).
In a similar way to N #(6) we introduce
]\7;‘7)(6) = ﬁéa) e_‘mg),a >0, 0<d<l.
Let ¢ € D(HY), and define
M (1) = (), N @0)u(t))
The map t — M?(t) is differentiable and
- i oy
(3.17) N7 (t) = - (6@, [Hn N 0)]0(8) )
We set
L 7 (o
aZu(@ ) = 5 (0. [Hn, N ()]0

for any ¢, € €5°(R") @ Tgy. Let q° = q§ - Note that 3/2 -0 > 0 —1/2
if and only if ¢ < 1. In what follows we assume that H #+ a > 0 and
HY +b > 0. Here a and b are introduced in Corollary 3.3.
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LEMMA 3.8. — Assume (Ay), (A1) and (Aél)), For o € |0, 1] there exists
C > 0 such that for all i € (0,1) and ¢, € €5°(R™) @ Tgip:

4% (6, 9)] < Cllw” x| (I(Hp + 1) 26| | (N2
+([(Hp 4+ DY 20 |[(N)29))
Proof. — The commutator can be computed explicitly as follows

n d
3 ST (INY(6), DIDI, + DI N (6), D).

Jj=1p=1

[N(U) 1
2

Note that
[e_m;ﬂﬁx(f)] =N ax(&f),
e G ()) = @ () e
where € =1 — e 9%Ik*" We have
[NV}(8). D}
= it (115, =N N7 e () + NYa (g e )
= —iW(X+Y +2),
where
X =19, e N,
y — ]\7(0) 6—51\7;@ aj.(6),

7 — N(O’)/\* (_5) e—éN;LU)

J H ’

1I7 is given by

—LZ kPR en(k) (g (k) €727 a5 (k) — (k) €74 an (k) dk,

and

d—1
0 f)ziz:/ el 3 ex (k) (k) (1 — oMMy 627kt G (1) s,
A—1 /R

d—1
@6 =1y / Ik Eex (k) () (eI 1) e=2mikds g (k) ds.
! N1 /R4
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We use the same trick for Y and Z as we used in the estimate on ]/\7,3 e ONn,

We have

o) _ (o G(o) — ()
Ny eV Gy ,(6) = 6N =N @y ,(6/9),
where
sup SN e N | < 1/e,
0<6<1
(1— e MRy /5 < R|k|2.
Let

. 1 n d _ -
@ (@9) =52 D {UX+Y +2)6,Djy) + (D6, (X +Y + Z)y) }
j=1p=1
Note that we have already seen that

ZZIIDWII Cll(H} +0)/2¢| < Cll(Hp + )29,

j=1p=1

It is straightforward to see that

n d
%Z > (Y6, D) + (DoY)
j=1p=1
< O G NN 2| (H s + a)p|| + (NS 2)[[(Hp + a)o]))
We estimate Z:
n d
& " S (26, D) + (Dho, Z0))

j=1p=1

= (@, (N} e D)+ (DL (- ONY e )

+ (@5, (<) e 6, D) + (D1, 35, (<) e ).

Taking the Coulomb gauge condition we obtain that
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~ (o) N
+ (a,(~€/5)0, DISRIT &5 )

< Ol Y2 (I(HY + b)YV26N D o080 [|(Ng) M 2|
+||(HY + b)1/25ﬁf{r) o 0N ¢||||(ﬁ;(50))1/2¢||)
< Ol Y2 (1 (G + )20 | (V)20
+ Y+ B) 2 (N) 2]

Similarly

1 & o _ . -
3 20 (e 6,3, (<w D) + @ (O DY, e )

j=1p=1

n d
- % SN (D2 e 6, (W) + (@ (—w?7E) 6, DY eIV )

j=1 p=1
< Ol 2 (IS +6)/2 e N0 (V) 24|
ICES +5)172 07 (W) /29)))
< Ollw? 2 I (ICS, + 5) 2l [(N) /20
+ ||, + ) 26| (N2

Finally we estimate X. The result is

n d
%ZZ {(X¢, D}p) + (Do, X9}

< Ol 2 (1 (G + )20l [(V7) 20
G+ 0) 2 (V7))
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Then

la7(9,9)] < Cllw™™ x| (I(Hn + @) 2SIl (N7) /20
+ I Hp + a) 20| (N)20]).
Here C is independent of A and 0. O
With the aid of Lemma 3.8, we prove the following bound on M?(t).

LEMMA 3.9. — Assume (Ap), (A1) and (Aél)). Then for o € [0, 1] there
exists a positive constant C' independent of h and § such that for any t € R,

M7 (t) < C(, (Hp + a)p) + MO (t).

Proof. — From Lemma 3.8, the lemma follows. g

Let Q(T) be the form domain of T'. Gronwall’s inequality then yields the
sought result of propagation.

PROPOSITION 3. 10 — Assume (Ao), (A1) and (A, Let o € [0,1] and
v € QUHY) NQ(NY), then e~ # 1y € Q(N|7).

Proof. — The proof is similar to that of Proposition 3.6. Let ¢ € D(ﬁ%)
By Lemma 3.9, we have

Me( /MU )ds + M°(0 C/ (M?(s) + 60)ds + M?(0),

where § = ||(Hh + a)'/?y||%. Then Grénwall’s inequality yields

MC (1) < (1N () 20|12 + |(Hp + a)/20]|2)eC,

where C does not, depend on f and §. This mequahty can be extended to
W e Q(Hp) NQN 0)) Furthermore for all ¢ € Q(Hp) N Q(N(U))

; (o) 1/2 2 _ 5N

(57 0) 2001 =i [~ a0y
= lim(| (V7 (8)) /2> + | (H + a) /29 )l
= (N2 ]2 + | (Hp + a) /2 ][2)e .

Hence by the monotone convergence theorem, it follows that ¥ (t) € Q(N 7,
and

[NV 20012 < (NSO 20012 + ||(Hp + a)/29)2)eC1.
Then the proposition follows. O

From the proof of Proposition 3.10 we obtain the corollary below.
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COROLLARY 3.11. — Assume (Ay), (A1) and (Agl)). For o € |0, 1] there
exist two constants K,C > 0 such that for all h € (0,1), all ¢ € Q(HY) N
Q(N'™)), and all t € R,

I(NOV28) ]| < K ([(NSYY 20+ [|(HY + 1)20) €1

3.2.3. Particles position estimates

We end this section by proving localization estimates for the particles
along the Pauli-Fierz quantum dynamics. In fact, we show below that if an
initial state is localized in position then for all times it will stay localized
uniformly with respect to i € (0, 1).

LEMMA 3.12. — Assume (Ay), (A1) and (Aél)). Then there exist con-
stants K,C > 0 such that for all V € Q(HY) N Q(g?), all t € R and all
he(0,1):

(1) (e~ w, G2 e~ 115 w)

: : K(U, (HY +3%+1)0) N,
(2) (e Hfn W, g2 e AN T) < K

<
< K(W, (H) +%+1)0) el

Proof. — The argument is based on Gronwall’s inequality and is similar
to the one employed in Subsections 3.2.1 and 3.2.3. So, we just indicate here
the key point. In particular, one can use the work of Faris and Lavine [30,
Theorem 2] (see also [3, Theorem B.1]). So, it is enough to estimate as
quadratic forms on Q(ﬁ 9) N Q(g?) the following commutators,

(3.18) Ty = i[p?,q;] = 2hp; - G,
(3.19) Ty = i[p; - A;(Q;,a),q7] = 2hq; - A;(G;, ).
Since the right-hand sides in (3.18) and (3.19) are bounded respectively by
(3.20) TSP +a) . R <G+ A4(5,0)%
then by Corollaries 3.3 and A.5,
N(t) = (e 7t @ g2 e~ i5Hn @)

< N(0) + tKo (W, (HY + 1)¥) + Cy /Ot N(s)ds

< KU, (HY + 32 +1)0) e
for all ¢ > 0 and some constants Ky, Cy, K,C independent of time and

h. Note that the case ¢ < 0 follows by a simple change of variable. This
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proves (2). On the other hand a similar inequality
M(t) = (e #7150 0, g% e iR w)
t
< M(0) 4 tKo (¥, (HY 4+ 1)¥) + Co/ M(s)ds
0

< K(W, (H} + 3%+ 1)¥)

holds true for some possibly different constants. Thus we prove (1). O

4. Derivation of the characteristic equation

Our approach for the derivation of classical electrodynamics from quan-
tum electrodynamics is based on the analysis of time-dependent Wigner
measures (u¢)ier of the quantum evolved states (or(t))re(o,1) given in
Theorem 1.4. Due to the complexity generated by the particles-field in-
teractions, it is not possible to compute directly or explicitly these Wigner
measures. Therefore, it makes more sense to write a dynamical equation
that characterizes the time course of such probabilities. In particular, one
obtains such relation if one differentiates with respect to time the char-
acteristic or generating functions of these Wigner measures (j¢)ter. Such
equation is a crucial step in our analysis; it will be given in Proposition 4.19
and named characteristic equation.

4.1. Preliminaries
4.1.1. Weyl-Heisenberg operators

The Weyl-Heisenberg translation operators on the particle variables are
defined as the unitary operators on L2(Rd", C),

(4.1) f(p, q) = 'PI=TP) vy (p g) € R x R,

The space R x R = €% is endowed with a complex structure
z=2(p.q) =q+ip, V(p,q) € R xR™,

and a canonical symplectic form

Sm(z, 2 ) =q-p —p-qd, Y(paq),®, )R>
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Hence Weyl-Heisenberg operators can also be labelled by the phase-space
points z € €9,

(4.2) T(z) = T(p,q) = e Sma+ip),
satisfying the particles Weyl commutation relations:
T(T() = 33 Tz 4 o),
T(2)* =T(z)"" = T(=2).
Moreover, the commutations rules below hold true for any z = ¢+ip € C",
(43) T(Z)Gf(z)* =g~ hq,
T(2)pT ()" =p— hp.

Similarly, one defines also the unitary Weyl operators on the Fock space
Is (530) for any f € $° according to the formula,

(44) W(f) — e%(@(f)Jr@*(f)) )

With these notations the following Weyl commutations relations for the
field are satisfied,

W(f)W(g) = e~ 23m900 W (f 4 g), Y f,gen°,

where Sm( -, )go denotes the imaginary part of the scalar product on $°.
Since the total phase-space of the particles-field system is

(45) XO _ RZdn @50 = Cdn @5")0,
it follows that the mapping
(4.6) (z,a) € X0 — Wi(z,0) = T(2) @ W(a),

defines a strongly continuous irreducible representation of the Weyl com-
mutation relations over the Hilbert space

H = L*(R") @ Ts(9°).

Note that we will use indifferently the notations Wy (z, ), Wr(p, ¢, o) or
Whr(€) when 2z = (p,q) and £ = (2, a).

4.1.2. Coherent states

Consider the normalized Gaussian function

dn

wolz) = (wh)~ T e~ /2" ¢ [2(RI),
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then the coherent vector, centered on zy € €%, is defined as

(4.7) Pz = f(fm) %0

Similarly, for any o € $° one defines coherent vectors in the Fock spaces
as

o) w(La)o

where ) is the vacuum vector in T's(?). Both vectors (4.7) and (4.8) are
normalized. For any ug = (po, qo, a0) € X° such that 29 = (po, qo), the one
rank orthogonal projection

V2 V2
Dzo ® W<L.h040 Q) Pz @W o5 o Q
defines a h-scaled family of density matrices over 7 called the coherent
states.

(4.9)  Ch(uo) =

4.1.3. Examples of Wigner measures

The following result proved in [8, Theorem 6.2] shows that under mild
assumptions any family of quantum states admits at least one Wigner mea-
sure.

PROPOSITION 4.1. — Any family of density matrices (0r)ne(0,1) on H
satisfying the condition:
(4.10)  36>0,C5>0:YVhe (0,1), Trlon(d>+q2+ Np)’] < Cs,

has a non trivial set of Wigner measures, i.e., M(gn,h € (0,1)) # 0. More-
over, any pu € M(or, h € (0,1)) satisfies

[ llEaute) < .

The above result is a consequence of Weyl commutation relations, Arzela-
Ascoli’s type theorem, Prokhorov’s theorem and pseudo-differential calcu-
lus. For further details, we refer the reader to [8, Theorem 6.2].

On the other hand, the set of Wigner measures for a family of coherent
states is remarkably simple and it is given below.

LEMMA 4.2. — Consider for any uy = (po, qo, ) € X the family of
coherent states (Cr(uo))ne(0,1) defined in (4.9). Then

(4.11) M (Cr(uo), i€ (0,1)) = {0},
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where 0, is the Dirac measure centered on ug. Furthermore, if uy =
(po, o, ) € X for some o € [1,1], then the family (Cr(uo))ne(0,1) Satis-

fies the assumptions (S{"), (S\") and (S{7).

Proof. — According to Definition 1.1, in order to determine the set of
Wigner measures of the family of states (Cr(uo))re(o,1) it is enough to
explicitly compute the limit

;Linb Tr [Ch(uo)Wh (27rq, —2mp, \@wa)]

—

for any ¢ = (2mq, —27p,v/2ma) € X°. Indeed, using Weyl commutation
relations one shows

(4.12) f17,1—>InO Tr [Ch(uo)Wﬁ(S)} _ o2miRe(€,uo) xo
“13) ARGl

Furthermore, if ug = (po, g0, ) € X7 then one can verify that
Tr[Cr(uo)dT(|K])] = (a0, [Klao) o = [laolF: /2,
(4.14) Tr [Cr(uo)dT ([k[>7)] = (a0, [k[*7a0) 50 = [l
Tr [Ch(uo)ﬁh] = [laollZo-

Such identities can be proved using canonical commutation relations in
Fock spaces (See for instance [8, Propositions 2.7 and 2.10]). Similarly,
using (4.3) one also proves that

(4.15) Tr[Cr(u0)@®] = (o, (T — iV2q0)*¢0) = (0,3 >¢0) — 245,
(4.16) Tr[Cr(u0)D®] = (o0, (B — iV2po)*¢0) = (0. Pp0) — 20,

for o being the Gaussian function in (4.7) and zy = qo + ipg € C".
Since up = (po, o, ) € X7 for some o € [4,1], one notices that all the
quantities in (4.14), (4.15) and (4.16) are bounded uniformly with respect
to A € (0,1). O
A simple observation shows that any Borel probability measure g over
X0 is a Wigner measure of at least one given family of quantum states.

LEMMA 4.3. — Consider for any g € P(X°) the family of density
matrices

(4.17) on = /XO Cr(u) dpo(u),

where Cr(u) is the coherent state defined in (4.9) and centered on u =
(p,q,a) € X°. Then

(4.18) M (o, fi € (0,1)) = {po}-
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Furthermore, suppose that

(4.19) [ ulBer d < o,
X0
then the family of density matrices (0r)re(o1) satisfies the assumptions
(557), (51") and (557).
Proof. — Using (4.12) and (4.17),
lim Tr[0s Wi (27q, —27p, V27a) | :/ 2TIRe(E W) X0 10 (u)
X0

(4.20)  h0
= 7 ol (€),

for all £ = (p,q,a) € X°. Hence according to Definition 1.1 the first state-
ment (4.18) is proved since the right-hand side of (4.20) uniquely deter-
mines the probability measure pg. The second statement is a consequence
of (4.14)—(4.16) and the assumption (4.19). O

Finally, we note that the set of Wigner measures resulting from a family
of quantum states is not a singleton in general. However, for any family
(0r)hes it is always possible to find a subset %, C .#, 0 € .#, such that
M(op, h € H) is a singleton.

4.2. Duhamel’s formula
4.2.1. Weyl-Heisenberg operator estimates

Here we highlight the fact that the Weyl-Heisenberg operators keep the
form domain of the Pauli-Fierz Hamiltonian Hy invariant. These properties
will be useful to establish a Duhamel formula for quantum evolved states.

LEMMA 4.4. — For any a € $° there exists a constant C' > 0 such that
for any h € (0,1) and any ¥ € D(Ny),

(4.21) I(Nw) 2 W (@) ¥r, (50) < C || (N5 + 1)/ ¥
(4.22) IN R W (@) ]|r, (50) <

I's(H°)»
Cl(Np+1) ¥lr, (50).-

Proof. — The above estimate is a consequence of the commutator ex-
pansion formula,

W(a)* NyW(a) =Ny + if a* () ih a(a) + ﬁ2||a\|
= _ —_ — _— 0,
4 4 V2 V2 2 9
and #-scaled standard number estimates (see, e.g., [8, Lemma 2.5]). O
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LEMMA 4.5. — For any a € $1/2 there exists a constant C > 0 such
that for any h € (0,1) and any ¥ € D(HY),

(4.23) [(EHYY2W (@) Ol < CI(H + 1) | .
Proof. — It is a simple consequence of the fact that
(HY +1)"Y2 [a% (), HY] (HY 4+ 1)71/2,

is bounded uniformly with respect to i € (0,1), where a! stands for a
creation or an annihilation operator. O

Similar estimates also hold for the Weyl-Heisenberg operators T

LEMMA 4.6. — For any z € C there exists C > 0 such that for any
e (0,1) and any ¥ € D((p2 + q2)V/?),

(4.24) (5% +3*)"°T(2) U 2 qany < C (B + 3 + 1) | 2 any

Proof. — In order to prove the above estimate, it is enough to evaluate
the commutator between the generator of the Weyl-Heisenberg operator T’
and the harmonic oscillator p2 4+ 2. An explicit calculation yields

ip*+@% p-q—q:b] =2h(q-G+p p).
Moreover, the right-hand side is bounded uniformly with respect to i €
(0,1) by p? + @2 in the quadratic form sense. O

4.2.2. Duhamel formula

The argument behind the Duhamel’s formula in Proposition 4.7 is quite
general. To highlight the main ingredients in this step, we list the assump-
tions at our disposal. For & € (0,1):

(1) € € XO — W;(€) is a strongly continuous representation of the
Weyl commutation relations on the Hilbert space J#.

(2) (Hp, ﬁ%) is a couple of self-adjoint operators on .7 such that ﬁ%
is non-negative and the form domain Q(Hy) = D(|H#|?) coincides
with that of HY.

(3) The form domain Q(ﬁ 9) is invariant with respect to the Weyl-
Heisenberg operators Wy (€) for all £ in a dense subset X /2 of the
phase-space X0.

Let (0n)re(0,1) be a family of density matrices on H and define:

(4.25)  op(t) = e R R oot n and  gy(t) = i HR gu(t) e RHR
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Recall the hypothesis (Sél)) which specifies the regularity condition that
we shall require for the initial quantum states (05 )re(0,1):

30y >0, Vhie(0,1), Tr[on(HY+1)] < Co.
The uniform bound in the trace means precisely that the operators
(4.26) (Hj + 1) 2 p(Hy + 1)1/ € 21 (2),
have a finite trace norm, uniformly in # € (0, 1).

PROPOSITION 4.7. — Assume (Ay), (A1) and (Aél)), Let (on)re(0,1) be

a family of density matrices satisfying (S((Jl)). Then for all £ € X2, all
he(0,1) and all t,ty € R,

(4.27)  Tr [Wh(€)an(t)]

= T V(0] ~ 5 [ T (WO, Hi(9)] ) s,

to
with
(4.28) Hi(s) = ¢ #10 (Hy — HY) o713,

where the commutator in the right-hand side is interpreted as a bounded
quadratic form on Q(HY).

Proof. — It follows using the Weyl-Heisenberg estimates of Lemma 4.5,
Corollary 3.3 and the fundamental theorem of calculus for the function
R >t +— Tr[Wi(€)0n(t)] which is of class ! in our case. O

4.3. Commutator expansion

The main part to be analyzed in the Duhamel formula (4.27) is the com-
mutator [Wr(§), Hr(s)]. In particular, we wish to expand it with respect
to the parameter fi. A simple computation gives

n

~ ~ 1 PN 1
Hy — Hj :Zf(pi _Ai(Qiaa))2 ~ 9

mg

i+ V(@)

%

(@) = Bi - Ai(@,0) — Ail@,@) - Bi) + V(@)

\
]
-
—
N
)
)

=1
n

= 271” (Ai@,a)Q —2p; - Ai@,ﬁ)) +V(@Q).
i=1 4
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The last equality is a consequence of the Coulomb gauge. Moreover, one

has
AL (@i, a)* =a*(r))* +a(ry)? + 20" (r))a(ry) + hllrf 130,

i

with the function r} given by

Xl(k) —2mik-q; v o0 d 0
(429) ﬁ( e2nik s ¢ (1) € L (RY,:5°).
V2K A—Toood—1

and

Using the above notations, one obtains

n d
77 1 ~k (U ~( v K  UNS U v
(4.30) H,(0) = Z (@ (ry)? +a(ry)? +2a*(r} ya(ry) + h|lrf |30)

P (@ () +ar)) + V(@)
In order to use the estimates of Subsection 3.2, it is more convenient to put
the quantity H(s) defined in (4.28) in the following form.

LEMMA 4.8. — For any s € R the time-evolved interaction term ﬁl(s)
takes the from,

1 d
S a (¥ ()) - B+ BY - alri(s))

+V<Z]\1+Sp1>7a\n+spn)v
mi m.

n

where
ik _omik-(d;+sPi is
@) ) = [ 2B gy g mik s g wisik '
v/ 2[k|
A=1,....d—1

Furthermore, H(s) is well defined as a quadratic form on Q(H 9) which is
relatively HY-form bounded.
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Proof. — Recall that H(s) = e/#% H;(0)e~i# 1%, So, the expression

of H(s) is a consequence of (4.30) and the commutation relations,

ei%Hf a]i(f) e*L'%Hf — aﬂ(eisw f)7

»2 . B g

gy e R = in”—l—sp—z', v=1,...,d.
(2

i
e

o

Additionally, the Coulomb gauge (1.12) condition is used to show that

d
dobr-at(ri(s) = a*(r{(s) - by

v=1

Finally, thanks to Corollary A.5 one verifies that H 7(s) is a f[%—form
bounded quadratic form. O

As mentioned before, our main purpose here is to establish a semiclassical
expansion of the commutator

(432 DVa(©), H1()] = (Wal©) His) Wal€)* = Hi(s)) Wa(©).

LEMMA 4.9. — Forany s € R and any ¢ = (p,q,a) € X'/? the following
identity holds true in the sense of quadratic forms in Q(HY),

Wi(€)Hi(s)Wn(&)"
-3 o :1{<a*<’f1;<s>>+ ) +(a o) - Rt e0)

i=1 lu1<
n d
1 ih

— — p; ﬁp?)(aﬂ”s —ﬁs,a)

PSS () - T E(e)a)
+V<al+s—h(q1+s),. ,Ein+s”—ﬁ<qn+sp”>)

1 1 n n

where
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Proof. — The stated identity is a consequence of the commutation rela-

tions
W(a)a* (/)W ()" = a*(f) + L%(a, ) go,
W(@)a(/)W(a)" = alf) =i (f.)ss
and
T(2)py T(2)" =i — hpy,
T(2)@/T(2)" = G — ha,
where z = (p, q) € R?%". In particular, we have
T(2)rY(s) T(2)* =77 (s) € L(LARL); LA(RE) @ 9°). O

LEMMA 4.10. — For any s € R and any € = (p,q,a) € X'/? the follow-
ing semiclassical commutator expansion holds true,

1
(4.33) = Vi), Hi(s)] = (M(s,h,€) + h R(s, 1, ))Wi(€)
as a quadratic form in Q(ﬁ ,Ql) with the principal part M given by

(4.34) M(s,h, &)

n d
N Z 2;%‘ l\;ﬁ Z<04;7“1 (s))a™(ry (s)) — (ri(s),a)a(r{(s))| +h.c.
-« mi léza*@f(s))m ),a)| +h.c.
z; 1 i Vd_
- — m; ﬁZf Za +h.c.
_vv(al‘ksf;ll,..,’fjn{-(g;) . (q1+57r;1,...7Qn+85Ln>7

and there exists a constant ¢ > 0 so that for all h € (0,1), s € R and
£e X2,

(4.35) [[(F}+1)7> M(s,1,€) (Y + 172y < 0+ s €] xo,
(4.36) [|(EY+1)71/2 Ris, 1.€) (HY+ )72 ) < 143D (14 €] x0)7.
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Proof. — The commutator expansion (4.33) is proved by using Lem-
ma 4.9, the identity (4.32) and the Taylor expansion for 7% and for the
potential V' with respect to A, i.e.,

e2ﬂ£hk-(qi+s%) 1
(4.37) T (s) =r(s) (1 +h - =ri(s) + hgi(h,s),
and
(4.38)

V(G+sp—Nh(g+sp) =V (7+sp) — iVV(q+ sp)(qg+ sp) + 1> 0(1, s),

where g¥(h, s) and 0(h, s) are the reminder terms, p = (5;) and
*Ji=1,...,n

p= (5’1—) . In particular, using the elementary estimate |e? —1| <
i/i=1,..n

V2]y| for all y € R, one shows that g satisfy the following uniform bounds

with respect to # € (0,1) and s € R

19 (7, 8)l.2(22. L2050y < Mi(L+ |s) [I€]lxo [[xill 5172,
lo™""2g¥ (R, )l 222, 1250) < Ma(L+ [s]) [I€]|xo il o,

for some constant M; > 0. On the other hand, # satisfies for some con-
stant My,

107, 5)|| (L2 rany) < Ma(1+ |s])? €] %o,
uniformly with respect to & € (0,1) and s € R. Combining the latter esti-
mates on g7 and 6 with the aid of Corollary A.5 and the assumptions (Ao)

on the potential V' and (Al)f(Agl)) on x;, one shows the estimates (4.35)
and (4.36). O

4.4. Characteristic equation

In this subsection, we take the classical limit A — 0 in the Duhamel
formula previously derived in Proposition 4.7. Recall that (0x(t))se(0,1)
and (0r(t))re(o,1) are given in (4.25).

LEMMA 4.11. — Let o € [%,1] and assume (Ao), (A1) and (Ago)). Let
(0n)re(0,1) be a family of density matrices on J satisfying the assump-
tions (SS), (St) and (S$7)). Then the families of states (0r(t)reo,1)
and (9r(t))re(o,1) defined according to (4.25) satisfy the same assumptions
(Sél)), (S%l)) and (Sga)) uniformly for any t € R in an arbitrary compact
time interval.
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Proof. — First, note that
Tr[on(H)HY) = Tr[on(t)HY],
Tr [0n(t)dT ([k[*7)] = Tr[on(t)dD([k[*7)],

Tr [§ﬁ(t)]\7ﬁ] =Tr [Qﬁ(ﬁ)ﬁﬁ] .
Thus, it is enough to bound only the right-hand sides. By spectral decom-
position,

1) = > ulm)le™ FI () e H g (m)),
meN
and
Tr[ = > MmN R) /2 e g ).
meN

Hence using Corollary 3.11 one shows for some constants K, C > 0,
Tr [Qﬁ(t)ﬁﬁ] < K(Tr[gﬁ ]/\\[ﬁ] 4+ Tr [Qﬁ(ﬁ% + 1)]) ec‘tl,

uniformly in & € (0,1). Similarly, o5 (¢) satisfies the assumption (S’éa)) by
Corollary 3.11 and the spectral decomposition. Now, using Corollary 3.3
one deduces

Tr[ = 3" Nalm) || (HY)M? e gy (m) |2
meN
S Mn(m)|[(Hp + a)'/2 p(m) |2
(4.39) meN
< D Malm)lI(HS + b)Y u(m)|?
meN

< Trlon (HY, +1)].
On the other hand, thanks to Lemma 3.122 the estimate
(4.40) Tr[on(t) §2] < K1 Tr[on (HY + 3% +1)] el

holds true for some constant K1, ¢; > 0 and uniformly in /2 € (0, 1). Finally,
applying Lemma 3.121 for the state on(t) with the help of its spectral
decomposition, one proves the estimate

Tr[igﬁ() } X Kle[Qh( )(Hﬁ+q +1)] ecl|t|
< Ky Trlon (HY, + @+ 1)] el

For the last inequality we have used (4.39) and (4.40). O
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LEMMA 4.12. — Let (0n)re(0,1) be a family of density matrices on
satistying (SS"), (5" and (S57) for some o € [3,1]. Then for any com-
pact time interval J there exists C' > 0 such that for any Wigner measures
e € M(or(t),h € (0,1)) and 1, € M(px(t),h € (0,1)), and for all t € J,

(1) Syo lullZs due < C,
(2) fXO ||U||§(a dp: < C.

Proof. — The result is a consequence of Lemma 4.11 and a general argu-
ment related to Wick calculus and semiclassical analysis elaborated in [10,
Lemma 3.12]. In fact, according to the latter reference if one verifies that
a family of density matrices (pn)ne(o,1) on H satisfies

Te [on Na| <€, Tr [ondD(RP)) < C, T [pn (52 +3%)] < G,

for some constant C' > 0 uniformly in & € (0,1), then it holds true that for
any Wigner measure u € M(ps, h € (0,1)),

[algeanse [ Jaas<e [ @e@amsc
X0 X0 X0

Thus, applying such result for gy (t) and g5 (t) with the help of the uniform
estimates in Lemma 4.11, one proves the claimed bounds. O

LEMMA 4.13. — Let (0r)re(0,1) be a family of density matrices satisty-

ing (S(g‘s)). Then for any compact time interval J there exists C' > 0 such

that for all ¢ € X'/2 and all h € (0,1),
(4.41) | Te[Wh(€)an(t)] — Tr[Wa(€)on(s)]| < Clt — s] (1 +[|€]| x0)?
for any t,s € J.

Proof. — Applying Proposition 4.7 and Lemma 4.10, one concludes

|Te [Wr(€)on(t)] — Tr[Wh(€)on(to)] |

t
/S/
to

Note that in the last inequality we have also used Lemma 4.5 . Now, using
the bounds (4.35) and (4.36) one obtains for any ¢, ¢y € J,

(HY +1)7Y2(M(s,5,€) + hiR(s, ki, €)) (Hp + 1)71/2

L)

| Te[Wh(€)an(t)] — Tr[Wa(€)on(to)]| < c/ (1+[sD)?(1 4 11€]lx0) ds

to

< CJt — to| (1 + [|€] x0)>. U
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LEMMA 4.14. — Let (0r)re(0,1) be a family of density matrices satisfy-

ing (Sél)) and (Sil)). Then for any compact time interval J there exists
C > 0 such that for all &, € XY/? allh € (0,1) and all t € J,

| Te [ Wi (&) @n(t)] — Te[Wi(2)an(1)]|
< Oll& — &llxo([[&llxo + [[&2]lx0 +1).

Proof. — We shall use the following estimate:

|| (Wﬁ(fl) - Wﬁ(§2)) (ﬁﬁ + 1)71/2”5(%)
< cf|ér = &allxo ([[€1llx0 + [|§2]lx0 + 1).

See for instance [8, Lemma 3.1] for a proof of such inequality. This yields
| Tr[(Wa(€1) = Wa(&)) an(t)] |
< [[OVa(&0) = W) (N D) 72| o | N+ D2 200200

Now, assumptions (Sél))f(SF)) and Lemma 4.11 imply that there exists a
constant ¢ > 0 such that for all times t € J,

(4.42) Tr [gﬁ(t)(ﬁh + 1)] <ec
uniformly with respect to & € (0,1). (4.42) ensures that
Np+1)Y25,( H
|t v, .

is uniformly bounded for ¢t € J and % € (0,1). Then the proof is complete.
O

4.4.1. Extraction

For each time ¢ty € R, it is possible thanks to Definition 1.1 and Propo-
sition 4.1 to extract a sequence (hy)reny — which may depend on the
time tg — such that .# (gp, , k € N) is a singleton. However, for our analysis
we need to find a sequence (A )ken such that for all times .# (g5, (1), k € N)
is a singleton. Such property is proved below and it is based on a diagonal
extraction procedure and Prokhorov’s theorem. In particular, we shall use
the following weak narrow convergence topology on B(X?). Let (en)nen
be a O.N.B of the Hilbert space X and define the norm,

1
(4.43) lullfg = ﬁ|<u76n>ml2,

neN
on X°.
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DEFINITION 4.15. — A curve R 3 ¢t — py € P(X ) is said to be weakly
narrowly continuous if and only if the real-valued maps,

Ra>t+— vdu € R,
XU
are continuous for every bounded continuous function ¢ on (X, ||| xs ).
A sequence (pn)nen in P(X7) is said to be weakly narrowly convergent
to pn € P(X?) if and only if

lim w d,un = (0 d,U,,
XO'

n—oo |yo
for every bounded continuous function 1 on (X7, ||| xs).
PROPOSITION 4.16. — Let ¢ € [1,1] and assume that (Ap), (A1)
and (Agf)) are satisfied. Let (0n)re(o,1) be a family of density matrices in
H satisfying the assumptions (S((Jl)), (Sil)) and (Séa)). For any sequence

(An)nen in (0,1) such that h, — 0, there exist a subsequence (hy, )renN
and a family of probability measures (i;)ter such that for all t € R,

M(@n,, (t),k € N) = {5t }.

Moreover, for every compact time interval J there exits a constant C' > 0
such that for all times t € J,

(1.44) [ elBer ditw) <
XO
Proof. — Denote for £ = (p,q,a) € X9,

Gy(t, &) =Tr |:§ﬁ(t) W (27rq, —27p, \/57704)] .

For every compact interval J there exists C' > 0 such that for every t,s € J
and every &1, & € X0,

(445) ‘Gh(t7£1) - Gﬁ(57£2)‘
|Gﬁ(ta§l) - Gﬁ(8a€1)| + |Gh(8,§1) - Gﬁ(s7£2)‘
Clt — sl (1 + [|&1]lx0)* + Cllér — &llxo(I€all xo + [162]l x0 + 1).

The last inequality is a consequence of Lemmas 4.13 and 4.14. Now take a
countable dense set (t;);en in R. Then by Proposition 4.1 for ¢; there exist
a sequence (fiy)een and a probability measure iy, such that

M(on, (tr), € € N) = {ju, }.

<
<
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Repeating the same argument for each t»,...,t;,... and extracting at
each time a subsequence from the previous one, one obtains the sequences

(ﬁwg(é))ZGNa ey (hwj(é))EGNv ... such that
M(gﬁ«pj(e) (tj),f eEN) = {ﬁtj}’

and such that ¢, : N — N are successive extractions. Hence by the diagonal
argument there exists a sequence — given precisely by (i, (s))een — still
denoted by (f¢)een for simplicity such that for all j € N|

M(an, (t;), € € N) = {p, }.
So, according to Definition 1.1 this means that for any £ € X° and j € N,

G(tJ7 g) = Zli>120 Tr [gﬁe (tj)Wﬁz (27Tq7 —2mp, \/§7T'Oé)]

:/ 2miRelE w0 g, (u).
X0

Consider the family (op,(t;))een with the diagonal extracted sequence
(he)een constructed above; then the estimate (4.41) yields,

|G(t5,8) = G(t;, )] < Clty —tyr| (14 [I€]|x0).

So, by a density argument and completeness one extends the function
G(+,€) to the function on R such that

G(ta 5) - tl-igt G(tja 6)

The limit is independent of the choice of the sequence t; — ¢ and satisfies
as in (4.45) the estimate,

|G (t,&1) — G(s,&2)]
< Clt—s| (1 + [|&llx0)® + Cllér — &l xo ([[€1llx0 + [|€2]lx0 + 1)

Moreover, by the triangle inequality and (4.45) one deduces that for all
teRand ¢ € X9,

(446) Jim G, (t,€) = Jim Tr |3, (t) Wh, (27q, ~27p, Vra) | = G(t,€).

Remark that by Lemma 4.122 one verifies that for all ¢; in an arbitrary
compact interval,

(4.47) / lull%e 7, < 0.
X0
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Now, we claim that for all t € R there exists ji; € PB(X?) such that for all
£e X

G(t,f) — /XO e27rL§Re<§,u>xo dﬁt(u).

Of course, the above statement holds true for all ¢; and we need to extend
to every time ¢. On the other hand, we know that the limit (4.46) exists
for all times and so it is enough to identify G(t,£) as the characteristic
function of a given probability measure over X°. In fact, thanks to the
bound (4.47) one notices that the family (11, );jen is tight in B(X?), where
X" is endowed with the norm || - || xo . Hence by Prokhorov’s theorem such a
family is sequentially compact with respect to the weak narrow convergence
topology on P(X?) (see, e.g., [2]). Therefore, for any ¢ € R and (ty(j))jen
a subsequence such that lim; ...ty ;) = ¢ there exists a subsequence —
still denote the same notation — so that ;) converges towards a Borel
probability measure ;. Consequentially, for every time ¢ and for every
£e X0

. . — — 2miRe(€u) o 37
Jli>nolo G(td}(J)? g) G(t7 E) /)(0 € X d,uta

2miRe(€u) x0 js hounded continuous

since the complex-valued function u — e
relatively to the norm || - [| xo . Hence from (4.46) one deduces for all t € R

and £ = (p,q,a) € X°,

éhm Tr {ﬁﬁe (t) Wh, (27rq, —27p, \/577@)} = / o2 iRe(€,u) xo dfiy. m
—00 X0

4.4.2. Convergence

We are in position to prove convergence of the Duhamel formula (4.27)
when A — 0 and to derive the characteristic equation satisfied by the
Wigner measures (fi¢)teR.

LEMMA 4.17. — Suppose the same hypothesis as in Proposition 4.16.
Then for all t,ty € R and all £ = (z,a) € X°,

(eb'gm<.’z> e\/ig%da,.)ﬁo ) (ei\“rm<.,z> eﬁi@?e(a,~)ﬁo )

,Et = ﬁto

t
—i lim [ Tr[M(s,Tin,, &) Wh,, (€) On,, (5)]ds,

k— o0 to

where the term M (s, h, &) is given explicitly in Lemma 4.10.

Proof. — Apply the Duhamel’s formula of Proposition 4.7 with aid of
Lemma 4.10. 0
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The main step next is to use the dominated convergence theorem and to
calculate the limit

Jim Te[M (5, Fin., €) W, (6, (5)];

explicitly as integrals with respect to the measures ji;. This leads to an
equation describing the time-evolution of characteristic functions of ;.

LEMMA 4.18. — Suppose the same hypothesis as in Proposition 4.16.
Then for all £ = (po, qo, a0) = (20, ) € X?,

%(37 5) = khargo Tr [M(S, ﬁnk’ g)Whnk (E)Ehnk (S)]

4.48
( ) _ / m(s, &) o Sm(g+ip,z0) eﬁiéﬁc(ao,odﬁo djis(u),
X0

with the variable u = (p,q,a) € X° and

n d
S [ﬁ > (o, Y (5)) o FY () = (FY (s), a0){FY (s), @) | +hc.
LB | i y
_;E lﬁ;(a,ﬂ (S)(FY(s),ap) | +h.c.
n 1 i d d
=3 o | Yt P ) # = S F (s | e
_ivz7v (ql +sp71a aQn+sp) : <q0,j +Spoj) )
where
FY(s) = F¥(s ’ 7]{ _ X?,(k) & (k 27T£k'(q1'+s:;;)+£s|k|>
i (s) =F{(s)(p,q,k) (\/QTk (k) e e

s

Proof. — One needs to compute the limit for each term in the right-hand
side of (4.34). However, there are essentially three types:

~ D1 - D, Do,
V=V, V <Q1 +S—,...,qn —|—s") . <q07j + SJ> 7
mi mpy mj
V2 = {ao, 17 (s)) b,

V3 = (a0, 77 (s)) a”(r{ (s)),
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and the others are similar. So, we only provide here the limits for }; — Vs.
Note that

(4.50) Vi =eli i f(g) et tn

with f(z)=V,,V(z) - (qo st ’) Hence one obtains

TV Wh,, ()3, ()] = Te[f@ e F1E Wi, (€2, (s) F11H]
= Tr[f(@Wh,, (P2(E)en,, (5)]-
On the other hand, one knows according to Lemma C.4 that (g5, (s))ken
admits a unique Wigner measure y; and (®9)yz1s = ps (@Y is the linear free

flow defined on X° by (C.11)). So, since V € €2(R) and VV is bounded,
one can use Lemma C.1 and equation (C.2b), and deduce

Jim Te[f(@)Wh,, (2¢(E))en,, ()]

— / ) ei%‘m(z,‘i’g(zo)) eﬂé%e(@?(ao),a)ﬁo f(q) d,U/s(u)
X

- /X fSmlzz0) VBIeleo oo 1(90(g)) dfia(u).

Note that here ®%(2g), ®%(a) and ®(q) designate respectively the action
of ®Y on those components. Hence we recover the claimed limit related to
(i) by replacing f and ®Y with their values given respectively in (4.50)
and (C.11).

For the second term ), one writes

<C¥0,T2 / aO )\(k) —2mik-(qi+s ot Bi )+L5\k;‘ dk
R 2|k
; 2
Z / gi (k) T(—2rk, — k) dk,
m;
A=
where ¢} (k) = ( )meu( ) e islkl helongs to LY(RY). In particular,

Fubini’s theorem yields

Tr[VoWs, (§)0n,, ()]
_ Cg /R Gy [f( ok, 2 - k) 5 W, (g)gﬁnk(s)] dk

d—1
=> /}Rd g5 (k) Tr {ﬁiu T ( ok, 2777;5 k) W, (§)2h,, (s)] dk + O(hy,).
A=1

(2

ANNALES DE L’INSTITUT FOURIER



QED 2% cED 57

The last identity is a consequence of the commutation relations (4.3). So,
using the dominated convergence theorem with the aid of the assumption
(Sél)) and Lemma C.1 and equation (C.2a) with Fubini’s theorem one
deduces

kh_)r{)lo Te[VoWs,, (€)0n,, (5)]

d—1
; . —y 27s ~
= E /d g5 (k) kll}m Tr [pi W, (po — 27k, qo + - k,oq)) O, (s)} dk
A=17R > ‘

d—1
_ Z/]Rdgﬁ\(k) (AO p;/ eZL’Q(k,p,q) e2£%m(q+ip,zo> eﬁi%e(ag,odﬁ() dﬁs(u)> dk
A=1""

= [ o By (s i ¥Omiasinn) VB0 g (u)
XO
with
Di
Q(k,p,q) = —7k - (Qi + 8) :
m;

For the last term )3, one writes

e [Y3 Wi, (€)h,, (5)]

- Z [ 0T |7 (<2mk 2k ) o (6 Wh, (0, 0] b

%

=7 (s,¢)

Hence the dominated convergence theorem and Lemma C.3 give
lim 7 (s,¢&)
k—o0

_/ ei%m(q-&-ip,zo) eﬁi%e(ag,(ﬂﬁo e—Qﬂ'ik‘(qu‘,-i-S
X0

) (o, Fi(5)") 0 it ().
So, by Fubini’s theorem
Jim Te[YsW,, (€)@, (5)]
= [ el VARl a1 (5)) (o, FY (5)) 0 (0]
X0

with the variable u = (p, ¢, ) € X% and ¢ = (po, qo, o) € X°. O

So, we obtain below the intended characteristic equation as a consequence
of Lemmas 4.17 and 4.18.

PROPOSITION 4.19. — Let ¢ € [3,1] and assume that (Ag), (A;)
and (Agg)) are satisfied. Let (0r)re(0,1) be a family of density matrices in

TOME 0 (0), FASCICULE 0



58 Zied AMMARI, Marco FALCONI & Fumio HIROSHIMA

H satisfying the assumptions (S(l)) (S(l)) and (S(g)) Then the Wigner
measures (fi;)icr provided by Proposition 4.16 satisfy the following char-
acteristic equation for all t,to € R and all ¢ = (z,a) € XY,

(4.51)  Fip(elSmE2) eﬁmem,.)fjo)

¢
—i | 9(s,§)ds

to
where the term ¥ (s, £) is given explicitly in Lemma 4.18 by (4.48)—(4.49).

_ ﬁto (eigm(~,z) e\/ﬁi%e(m-)ﬁg )

5. Proofs of the main results

We reconsider now the Newton-Maxwell equation (1.7) or equiva-
lently (2.1) as a non-autonomous initial value problem over the Hilbert
spaces X7 for o € [1,1],

(5.1) {iu(t) = I(t,u(t)),

u(0) = uy,

where ug € X7. Here the non-autonomous vector field 1 is defined in terms
of the nonlinearity G : X7 — X of the Newton—Maxwell equation

(5.2&) G(u)pz = Z q“ )) VCI@A;’(Q% O‘) - tiV(q),
(5:2b)  G(u)g, = —E Ai(gi,a),
(52¢)  G(w)ay (k) = Z mi Jsz _ i) - ex(h) o2k

and the free flow ®Y : X° — X7 given by

(53) (I)g(pa q, Oé) = ( 1,...,n 3 (z + t) 5 (e—itw aA)A—l,..A,d—1>

as follows,
(5.4) It,u) = D%, 0 G o ®Y(u).
In other words, we have written here the Newton—Maxwell dynamical sys-
tem in its interaction representation. Note that the nonlinearity G is very
similar to I given in (2.2) and differs from the latter only by the term -
n (2.2b).

As a consequence of Proposition 2.5, ¢ inherits the following properties
from F.
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LEMMA 5.1. — Let o € [4,1] and assume that (A), (A1) and (Agf))
are satisfied. Then the vector field 9 : R x X° — X is continuous and
bounded on bounded subsets of R x X°.

Moreover, the strong solutions to the Newton-Maxwell equation (1.7) are
related to the above initial value problem (5.1) according to the following
relation. In fact, assume the hypothesis of Lemma 5.1 is satisfied. Then if

= (.7.3) € €1.X7) N (LX)

is a strong solution to the Newton—Maxwell equation (1.7) or equiva-
lently (2.1), then

w=(p,g—t (pi) e @) e €I, X°)

is a solution of the non-autonomous initial value problem (5.1). Recipro-
cally, if
U= (p,q,oz) e (I,X7)

is a solution of the non-autonomous initial value problem (5.1), then
(655 = (p, gt (jjb) a) e ¢(I,X7) N (I, X7

is a strong solution to the Newton-Maxwell equation (1.7) or (2.1). Fur-
thermore, recalling the free flow ®Y on X7, the strong solution @ in (5.5)
takes the expression below for all ¢ € I,

u(t) = ¢ (u(?)).

Additionally, thanks to the statement in Lemma 5.1 the initial value prob-
lem (5.1) is equivalent to the Duhamel formula,

t
(5.6) u(t) = ug +/ I(s,u(s))ds, Viel.

0
The above discussion is summarized in the proposition below.

PROPOSITION 5.2. — Let o € [4,1] and assume that (Ag), (A1)
and (Aga)) are satisfied. Let I be a bounded open interval containing the

origin. Then the statements below are equivalent:

(1) uw € €*(I, X?) is a strong solution of the initial value problem (5.1),
(2) w e € (1,X7) satisfies the Duhamel formula (5.6) for all timest € I,
(3) thecurvet € I — ®9(u(t)) € €(I,X°)NE (I, X°~1) is a strong so-

lution to the Newton-Maxwell equation (1.7) or equivalently (2.1).
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LEMMA 5.3. — Let o € [3,1] and assume that (Ao), (A1) and (A;U)) are

satisfied. Let (0r)ne(0,1) be a family of density matrices in 7 satisfying the

assumptions (Sél)), (S%l)) and (Séa)). Then for every compact time interval

J there exists a constant C > 0 such that for all u = (p,q,«) € X7 and
ted,

(5.7a) 19(t, w)llxe < Cr (Ipl* + lallf- +1)
(5.7b) < Cr (Jullko +1) -

Moreover, if (fit)icr is the family of Wigner measures provided by Propo-
sition 4.16 then for any bounded open interval I,

(5.8) /I/X 19(t, w)| x dfie () dt < oo .

Proof. — The estimate (5.7) is a consequence of the inequalities (2.3)
while (5.8) follows from Proposition 4.16 and (5.7). O

We recast below the characteristic equation of Proposition 4.19 in a form
more suitable for applying the general arguments in Appendix B.

COROLLARY 5.4. — Let o € [3, 1] and assume that (Ay), (A1) and (Agg))
are satisfied. Let (0r)re(0,1) be a family of density matrices in S satisfying
the assumptions (Sél)), (S%l)) and (Ség)). Then the characteristic equation

given in Proposition 4.19 takes the simple form:

(5.9)  Jug(ePrRelxT)

t
= gy (P ReIx7) - 9 / fia (TN Re (s, 1), y)xo) ds

to
forallt,tp € R andy € X°.

Proof. — The scalar product over X? can be written as a duality bracket
such that for all uy,us € X7,

<U1,u2>Xa = <U1,AUU2>X0’

where A is the unbounded operator over X defined by

10 0
A=1]0 1 0
0 0 1+]k?

In particular, one has for every y € X2° and every £ = A%y € X©,
Refy, u)x- = Re(€,u)xo,

Re(d(s,u),y)xo = Re(d(s,u), &) xo,
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Moreover, one can verify that

(5.10) G (s5,€) = —27 i (2T RAEW X0 Re(9(s, u), €) x0)
-~ (ezméﬁew,u)x«r Re(9(s, u),y>xa),

eo (20 o0
a 2[71’7 \/57'(' ’
while £ = (20, ap), where the quantity ¥(s,€) is given in (4.48). There-
fore, the characteristic equation (4.51) yields (5.9) for all y € X??. The
latter equation (5.9) extends then to all y € X? by the dominated conver-

gence theorem and the bound (5.8). So, to finish the proof it is enough to
justify (5.10). In fact, this is equivalent to proving

if one chooses

(5.11) m(s, &) = —2nRe(I(s,u), &) xo,

where m(s, ) is given in (4.49). Indeed, the latter equality follows from the
identity

m(s,€) = =Sm((G o 2 (u)) . (B7(€)),) — V2Re((G 0 D[ (w)),,. (D{(€)),,)-
Hence using the symplectic and euclidian invariance of the free particle and
field dynamics respectively, one finds that

m(s, ) = —Sm{(2%, 0 G (Y (), 20) — V2Re((2%, 0 G (B} (u))) ., o)
= 73m<(19(s,u))2, zo> — ﬂ%e((ﬁ(s,u))a,a@

20

= —27Re <(19(s,u))z, 2—7”> — 27Re <(19(s,u))a, \;%Ow>
= 72773‘ﬁe<19(3,u),§~>. |

In the sequel, we establish some regularity of the family (fi;)ier with
respect to time.

LEMMA 5.5. — The Wigner measures (fit)ier provided by Proposi-
tion 4.16 satisfy:

(1) pt concentrates on X, i.e., iy (X?) = 1.
(2) R>tw iy € P(X) is weakly narrowly continuous.

Proof. — On one hand, the bound (4.44) gives

[ Nl < oc.

On the other, Markov’s inequality implies

_ .
F({(p.0,0) € X°: flallgo > e}) < 5 lalf, )
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So, taking € — oo yields

m({(p,q,a) € X°:a ¢ 5’3"}) =0.

Therefore, the probability measures ji; are concentrated on X?. To prove
the weak narrow continuity of (fi;)icr, we claim that it is enough to show
that the function

(5.12) Rt [ 2™ Reluixs qp,(u),
XU

is continuous for every y € X?. In fact, suppose that the statement is true.
One remarks that for every arbitrary compact interval J the family (zi;):es
satisfies the bound

sup / g () < oo,
teJ o

since the estimate (4.44) holds true and |Julxs < |lul|%.. So, thanks to
the above bound one deduces that the family (f)ics is tight in P(X7),
where X7 is endowed here with the norm || - | xs. Therefore, applying the
Prokhorov’s theorem one deduces that for any arbitrary compact interval J
the family (fi):e s is sequentially compact for the weak narrow convergence
topology. In particular, take o € R and % a bounded continuous function
on (X7, |lxg). Then the steps below follow:

(1) For any sequence t; — ty one can extract a subsequence denoted by
(tj, )ren such that p;; weakly narrowly converges to a provability
measure f.

(2) Thanks to the above convergence and the continuity of the func-
tion (5.12), one deduces that the characteristic function of p, and
1 coincide and hence p = py,. Note that we have used that the map
u — 2™ Felvw)x s hounded and continuous over (X7, |- || xz).

(3) Hence one concludes that for every sequence (t;);en there exists a
subsequence (¢, )zen such that

lim () dpie,, = « ¥(u) dfig, -

k—o0 Xo

(4) So there exists a unique limit point and therefore the sequence
(1it;)jen converges weakly narrowly to fis,.
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Now, the continuity of the functions (5.12) is a consequence of the charac-
teristic equation (5.9) and the estimate (5.7) which yield

(5.13)  |fi(eXmiRelvixey _ fp, (e2miRe(u:)xe)

0
t

s\ Iollxe [ 190wl a7 (s
t o

0

/ [ (il + 1) ag s

for any ¢,tp in an arbitrary compact interval. In the last inequality (5.13),
we have used the bound (4.44) in Proposition 4.16. O

Next we apply the general results of the Appendix B. At this point,

<C < Ct — to

we suggest the reading of Appendix B. In particular, the spaces of smooth
cylindrical functions €5,

sition below relates the characteristic equation in (5.9) to the Liouville

" and the gradient V are defined there. The propo-

equation introduced in Appendix B.

PROPOSITION 5.6. — The family of Wigner measures (fi)ier defined
in Proposition 4.16 satisfies the Liouville equation

(5.14) /1 XU{B@(t, u) + Re(W(t,u), Vxo ¢(t,u))xo}du(u)dt =0

for any open bounded time interval I containing the origin with ¢ €
%&Oiyl(l x X7).

Proof. — It is enough to apply Proposition B.2 which establishes an
equivalence between Liouville equation and characteristic equation. Indeed,
the assumptions required to apply such result are true:

(1) R >t — pi is weakly narrowly continuous in B(X7) according to
Lemma 5.5.
(2) The bound

/I/ ot W)l diie(u) dt < oo,

holds true for any bounded open interval I thanks to Lemma 5.3

with the bound (5.8). O

Proof of Theorem 1.3. — Let o € [$,1] and assume that (A), (A1)

and (Aéo)) are satisfied. Consider for u, € X the family of coherent states
defined in (4.9):

(5.15) on = Cr(us).
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Then according to Lemma 4.2 one verifies that such family {on}ne(0,1)
satisfies the assumptions (S((Jl)), (Sfl)) and (Ség)). Hence one can apply
Propositions 4.16 and 5.6, and one concludes that there exists {fit}ter a
weakly narrowly continuous curve in (X ) satisfying the bound (5.8) and
the Liouville equation (5.14).

So, we have at our disposal all the ingredients to apply Theorem B.8 on
the existence of global generalized flow for abstract initial value problems.
Indeed, the condition 1 in Theorem B.8 is satisfied according to the above
discussion while the uniqueness condition in Theorem B.82 holds true by
Proposition 2.6. Hence one concludes that the ensemble of initial data

G { . there exists a global strong solution u of }
=<ug € X?:

Newton—-Maxwell equation satisfying (5.1)

is a Borel set and is total with respect to the probability measure fig which is
the unique Wigner measure of the coherent state family in (5.15). Therefore,
by Lemma 4.2 one deduces that

fio(G) = 6u.(9) = 1,

and consequently any u, € X belongs to G. This implies that for any initial
condition ug € X7 there exists a unique global solution u € € (R, X7) of
the Newton—Maxwell equation (5.1). Moreover, the generalized flow map

X7 — X°

(5.16) ug — u(t)

is well defined and Borel measurable. Finally, using Proposition 5.2 which
gives the equivalence between the two formulations (5.1) and (1.7) of the
Newton—-Maxwell equation, one shows the existence and uniqueness of
global solutions for the latter with a generalized global flow defined by

(5.17) Py (ug) = @Y o ‘it(uo)>

where ®9 is the free flow given in (5.3) and @, is the global flow of the
Newton-Maxwell initial value problem (5.1) in the interaction representa-
tion given by (5.16). O

Proof of Theorem 1.4 (The case § = 1 and singleton Wigner set). — Let
o € [3,1] and assume that (A4), (A1) and (Aga)) are satisfied. Consider
a family of density matrices (0n)re(0,1) on S satisfying the assumptions
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(557), (S and (S57)). Recall that

on(t) = o~ E I gy ol IR,

Gn(t) = R gy (1) et
For o € R pick 71z, a Wigner measure of the family (0x(t0))re(0,1)- The
existence of such Wigner measure [i;, is a consequence of Proposition 4.1
and Lemma 4.11. Moreover, according to Definition 1.1 this implies that

there exists a sequence (g )ren such that limy_, o Aix = 0 and

M(gﬁk(to), ke N) = {ﬁto}'

So, by Proposition 4.16 there exists a subsequence (still denoted by (fi)xen)
such that for each ¢t € R,

M(Eﬁk(t)vk € N) = {ﬁt}

Furthermore, by Proposition 4.19 the curve R 3 ¢ — 1, € PB(X7) satisfies
the characteristic equation (4.51) or equivalently (5.9). Therefore, using
Proposition 5.6 one deduces that R > t — [, is a measure-valued solution
of the Liouville equation (5.14). So applying the probabilistic representation
in Theorem B.6 one obtains the existence of a measure

n € P(X),

with X = X7 x ¢ (I, X7), concentrated on the ensemble of solutions of the
Newton-Maxwell equation (5.1), i.e.,

n(Fr) =1,
where
Fr={(up,u) €X: u satisfies (5.1) on I with the initial condition ug}.

Moreover, Theorem B.62 implies that for any bounded Borel functions
P: X =R

(5.18) Y(u) dpy = / ¥ (E¢(uo, u)) dn(ug, u).
X Fr
Thanks to the proof of Theorem 1.3, the generalized global flow E)t in (5.16)

of the Newton-Maxwell equation (5.1) is already constructed. Hence one
proves that the following identity holds true on the set Fr

Z(uo, u) = (S0 (ug, u)) = Py (ug).
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Recall that Z; is the evaluation map defined in (B.8). Thus, the equal-
ity (5.18) yields

() e () = / 0 B4(Z0(uo, u)) dn(uo, u)
Xo X
— ¥ o @y (u)dfio(u),
XU

since (Eo)w = fip and &% is Borel measurable. So, one concludes that for
allt € I,

/jt = (‘I)t)nﬁ0~
In particular, since any Wigner measure i, of the family (0x(t0))re (0,1

is equal to (5to)ﬁﬁ()a one concludes that such family of density matrices
admits a unique Wigner measure, i.e.,

M(Br(to), h € (0,1)) = {(D¢, )zfio}-

Finally, using Lemmas 4.11 and C.4 and the fact that the time ¢, is arbitrary
one concludes for all times t € R,

M(Qﬁ(t)7h € (0, 1)) = {(q)g)ﬁﬁt>/7t € M(en(t), h € (0, 1))}
= {(‘I’? © ‘it)ﬁﬁo}

= {(®¢)zp0}
since ®; = ®Y o &v)t is the Newton—Maxwell global flow and g = po as a
consequence of 9x(0) = 0x(0) = ox. 0

Proof of Theorem 1.4 (The case 6 > 0 and general Wigner set). — In
this paragraph, we indicate how to consider a general family of density
matrices (0r)ne(0,1) Without assuming (1.20) and on the other hand how

to weaken the assumptions (Sél)) and (Sfl)) in Theorem 1.4 and replace
them by the ones given in (S’éé)) and (S’YS)) for some § € (0,1]. The two
arguments (1) and (2) below are independent:

(1). — Suppose that (0r)re(0,1) is a family of density matrices on 7
satisfying (S(()l)), (S%l)) and (Séa)). According to Definition 1.1, if po €
M(gﬁ, h e (0, 1)) then there exists a sequence (hy)ken, fix — 0, such that

M (o, k € N) = {po}-

Hence thanks to the previous results so far proved one concludes that for
all t € R,

M(Qhk(t)7k € N) = {(‘I)t)ﬁ,u()}v
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and consequently, one proves
{(®0)zp10, o € M(on, 1 € (0,1))} € M(en(t),h € (0,1)).

Reciprocally, for any ¢ € R take a u; € M(o(t),7 € (0,1)) then there
exists a sequence (hg)ken, hr — 0, such that

M (on, (), k € N) = {p}.
So, applying the previous results so far proved one obtains
MR gy () e 0 |k € N) = M(on,, k € N) = {(D_)spus}-
Thus, we conclude that py = (®¢)3u0 for some pg € M (05,1 € (0,1)) and
prove the opposite inclusion. Note that we have used implicitly Lemma 4.11.
(2). — Suppose that (0r)re(o,1) is a family of density matrices on 7

satisfying (S$)), (S)) and (S{”). Then we will use an approximation

argument: Let x € 5°(R) be a smooth cutoff function such that 0 < x < 1
and y =1 in a neighborhood of the origin. Denote

XR =X (§>
and let A =N A2+ H 9. Then the family of density matrices

0 _ XR(A)QﬁXR(A)
BB T [ r(A)onxr(A)]

approximates o5 in the trace norm as R — oo for fixed . Moreover, let

m(R) = sup |lon(t) = on,r(t)] 21 (),
he(0,1),teR
where g r(t) = e~ iFHn On.R el Hn_ Thanks to the assumptions (S(g(s))
and (Sfé)) one deduces

lim m(R) = 0.
R—0

Furthermore, (S(()l)), (Sil)) and (Séa)) are satisfied by the family of density
matrices (o5, r)re(o,1)- In fact, dT'(|k|), N4 and dI'(|k[?>7) commute with A

which leads to (Sil)) and (Séa)) while for (Sél)) one uses the commutation
relations. Hence applying the so far proved results above one deduces that
for all t € R,

M(on,r(t),h € (0,1)) = {(P¢)sp00,r; fto,r € M(0n,r,h € (0,1))}.
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On the other hand for each ¢t € R and R sufficiently large, according to
Definition 1.1 from any sequence (hg)gen, i — 0 as k — o0, one can
extract a subsequence — still denoted the same — such that

(5.19)  M(on, (1), k € N) ={ue}, Mlon,,r(t),k € N) = {(Pt)sp0,r}
(5.20) M(on, k € N) ={uo}, M(on,,r, k €N) = {uo,r}.

Let |v| be the total variation of measure v. So, applying the general result
on the comparison of Wigner measures in [9, Proposition 2.10] yields

e — (®0)gpto 5] < lnint on, (8) — on, 5(0)] 2 o) < m(R),
lo — po,r| < liminf ||op, — on, rll.21 () < M(R),
k— o0

where the left-hand side denotes the total variation of the signed measures
pe — (P¢)gpeo,r and po — po,r. Therefore, the triangle inequity implies

(5.21) le — (@o)go] < [pe — (Po)gpo,r| + [0, — 10| < 2m(R),

since in particular the total variation of (®;)gpo.r — (®¢)gpt0 and those of
Mo.r — to are equal. So, taking R — oo in (5.21) one deduces that

(5.22) pe = (Pt)gtio-

Therefore, picking any u; € M(gs(t), s € (0,1)) and using the above argu-
ment one shows that

M(on(t),h € (0,1)) C {(Pe)gp0, o € M(on,h € (0,1))}.

While the opposite inclusion is justified by taking any po € M(os, b €
(0,1)) and then choosing and extracting sequences (fx)reny such that
(5.19)—(5.20) are satisfied; thus arriving to the conclusion (5.22) for some
pe € M(or(t),h € (0,1)). This ends the proof of Theorem 1.4. O

As an illustration of our method, we give further quantitative propa-
gation estimates satisfied by the Newton—-Maxwell flow derived from the
quantum dynamics of Pauli-Fierz.

PROPOSITION 5.7. — Assume (Ay), (A1) and (Aél)). Then for any prob-
ability measure pg € PB(X*) satisfying

(5.23)
[ Tl i) < oo [ @+ ol + i) dna(w) < o

there exists a constant ¢ > 0 such that for all times t € R,

624 [ o0+l duot) e [ lalfs dmo(w) < c e
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where (p(t), q(t), a(t)) is the solution of the Newton—-Maxwell equation (1.7)
at time t starting from the initial condition u = (p,q,a) € X1,

Proof. — Consider the following family of superposed coherent states
defined in (4.17),

on = /X1 Cr(u) dpo(u).

According to Lemma 4.3, (0r)re(0,1) satisfies the assumptions (S(gl)), (S:El))
and (Sél)). So thanks to Theorems 1.3 and 1.4, one concludes

(5.25) M(on(t), 1€ (0,1)) = {u} = {(®0) s o}
On the other hand, there exists a constant ¢ > 0 such that for all & € (0, 1)
and t € R,

(5.26) Tr[on(t) (H})?]
(5.27) Tr [on() (N)?]
The above inequalities are consequences of Lemma 3.2, Corollary 3.7 and

the fact that (5.26)—(5.27) hold true at time ¢ = 0. Indeed, a direct com-
putation yields

Te [on (9)?] < 2/ (" + Al + oL, ) dpo < oo,
X

< ¢
clt
<ce|‘.

Tr[on (N4)*] = /X (BllalF2 + lle|72) duo < 0.
So, applying the argument in [9, Lemma 3.12] one deduces

(5.28) / (p4 + ||a||%1/2) duy < liminfTr[gﬁ(t) (ﬁ%)Q] <,
X1 h—0

(5.29) /X1 ||0z||§%1/2 dps < li%n_j(r)lfTr[gﬁ(t) (Nﬁ)Q] Lcellll,
Hence (5.24) are consequences of (5.25) and (5.28)—(5.29). O

Appendix A. Uniform energy-field estimates

In this appendix we recall some well-known energy-field estimates which
we extend to h-dependent operators and verify that such inequalities still
hold true uniformly in # € (0,1).

In the sequel, we use the following shorthand notations:

573 _ L2(Rd, Cd*l)
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Consider a separable Hilbert space H, and bounded operators v €
X(H, H® 5’)) such that there exist maps

(A1) k— vV (k) = (vi(k),...,v5_1(k)), Vve{l,...d}

defined for a.e.k € RY, which satisfy that v§(k) € Z(H) for a.a. k € R?
and for all ¢ € H:

(v0)x (k) = vX (K)o,

d—1 d

o6l = 33 | Ik (R)olar,

A=1v=1

In particular, the given representation (A.1) defines an operator v” €

L (H,H®H°), with

d—1
I o = 3 | I 0By
A=1

d
||U||=22(7-£,H®.6) = Z”UV”?S,P(H,H@)YJO) :
v=1
This leads to the following definition.

DEFINITION A.1. — Let v € X(H,H ® 53) be as above. Then a(v)
and a*(v”), v € {1,...,d}, are the densely defined closed operators on
H&I (ﬁ) whose actions are defined by

3 =3 [ 5 i a
d—1
a*(v’) = 2 /]Rd vy (k)ax (k) dk

Here (v§)*(k) € Z(H) is the adjoint of v¥ (k).

If v and w are such that for a.a. k € R and all \, \' € {1,...,d—1} and
ve{l,....d}, [(v¥)*(k), wX, (k)] = 0, then the d-dimensional vectors a(v)
and a*(w), whose components are a(v”) and a*(w”), respectively, satisfy
generalized canonical commutation relations on a dense set, as stated in
the following lemma, whose proof is straightforward.

LEMMA A.2. — If for a.a. (k,k') € R?? and all \,\ € {1,...,d — 1}
andv € {1,...,d},

[(05)" (k), wi, (k)] = 0,
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then a(v”) and a*(w") satisfy

d d—1 d

)@ ()] = Y@@ ) =530 S [ () () .

v=1 A=1v=1
Let us adopt the following shorthand notation [v*,w] = 0:

[v*, w] = 0 <= [(v})*(k), w¥ (K')] = 0 for a.a. (k, k') € R*?,
VAN e{l,...,d—1}LVvedl,... d}.

In addition, let us denote by w the operator of multiplication by |k|. Given
vE ,,2”(7-[, H®5’J), with associated representation k — v* (k) for a.a. k € R?,
then wfv has k ~ |k|%v” (k) as associated representation.

LEMMA A.3. — Let v € f(’H,?—l ® 53), with associated representation
k + vV (k) for a.a. k € R®. If [v*,v] = 0, then, uniformly with respect to
he (0,1):

(1) |[a(o”) (Hy + 1) Hz(H@FS(ﬁ)) < ||W7%UV||$(H,H®50)7
(2) " (") (He +1) * | gmer.s)

_1
< lw 20" || 21, men0) + 107 23t 1o50) -

Remark A.4. — Analogous estimates hold if we take w = 1, and replace
Hy with the number operator Ny defined in (1.14).

Proof. — Let us start proving (1). By definition, one obtains

V)P =Y la)eE =Y dinll (o) @ 1D w2,

nelN nelN

Hence multiplying and dividing by w? (acting on the first variable), using
the symmetry of W(™), and H(U”)*w_%H_g(H@ﬁo " = Hw_%v”Hg(H Hos0)
one obtains

vk — 1 n— n
ZH U2 < DI w0 g Y nllw? @ 10D @2
J

nelN

<lw™ 20" | g0, ms0) | (He +1) 7 212
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To prove (2), one uses the canonical commutation relations:
@™ (v") w2
= (¥, a(v”)a" (v")¥)

d—1
= (V,a"(v")a(v")¥) + Z/Rd@l’,(vi)*(k)vi(k) v)dk
=1
_1 ., ~ 3 y
< w2 ||x(H,H®50)|\(Hf+1)2‘I’HQJFHU H?sf(?—t,?—t@ﬁ“)”qjuz- O

We apply the general estimates of Lemma A.3 to the Pauli-Fierz Hamil-
tonian. To this extent, let us identify
H = L*(R™)
and eventually take
1

X (k, aj) = k]2 eX (k) xa(k) e 7270,

acting as a x;-multiplicative operator on L?(R) for each k € R?, where
T; € R? is the j** particle position.

COROLLARY A.5. — Let v,w € Z(L? L* ® §) such that [v*,v] =
[w*,w] = 0 and let ||- || = ||| 2 nes). Then the following bounds
hold uniformly with respect to h € (0,1):

~ 1 ~ 1
(1) I(He+1) “a(v)-a"(w) (He+1) "o
_1 _1
< lw™2 0] 2 (lo™2wll & + [[w] £),
(2) [I(He+1) *a(v) - a(w) (He+1) [l
_1 _1
< (lo™2vfg + vl 2)lw™ 2wl »
—~ 1
(3) I(He+1) @ (v)-a(w

5 -3 —1 _1
(He+1) 2”3(%) < w20 gllw™2w] &
~ 1 1
(4) [(He+1) *a(v) - @ (w

)
) (He + 1)_§||g(9f)

1 < (o™ olle + ol ) wle + o))
(5) I(H+1) 5@ () (HY +1) [l g) < lw 20l + 0]

PPN -3 1
0 BE 1)y < lodolly + ol

>
~—
=
)
>o
+
=
[N
Q)
*

Appendix B. Measure theoretical techniques

In this appendix, we introduce a general abstract framework where a
natural relationship between characteristic equations, Liouville equations
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and initial value problems is established and a generalized global flow is
constructed for the latter. Our discussion sums up and simplifies several
technical results proved in [6, 7, 57], where we then use in a subtle way to
construct the global dynamics of the Newton—-Maxwell equation. In partic-
ular, this part is a crucial step for proving our main Theorems 1.3 and 1.4.
It is also worth noting that the techniques involved here are related to the
close subject of Gross-Pitaevskii and NLS hierarchies (see [22, 23, 52, 58],
and references therein). Firstly, we recall the notion of Liouville equations
over Hilbert spaces and state their equivalence to characteristic equations.
Secondly, we provide a probabilistic representation to measure-valued solu-
tions of Liouville equations and finally we deduce the existence of a Borel
global flow for the initial value problem.

Consider a separable Hilbert space H and a continuous vector field v :
R x H — H such that it is bounded on bounded sets. In all the sequel
denotes a bounded open interval containing the origin.

B.1. Initial value problem

The following equation defines a non-autonomous initial value problem:

d —
u(0) = uo.

Here up € H. A curve t € I — u(t) € H is a strong solution to the above

initial value problem if and only if u € €*(I,H) and satisfies (IVP) for

some ug € H and for all ¢ € I. In such case the Duhamel formula,

(B.1) u(t) = u(0) + /0 v(s,u(s))ds,

holds true for all ¢ € I. Reciprocally, any curve u € € (I, H) satisfying (B.1)
is a strong solution of the initial value problem (IVP). One of our goals is
to establish the existence of global strong solutions to (IVP) under suitable
assumptions. The method we describe here is quite different from Cauchy—
Lipschitz and fixed-point theories since it uses instead measure theoretical
techniques. Note that the vector field v : R x H — H is only assumed
to be continuous, hence standard arguments of nonlinear analysis are not
applicable.
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B.2. Liouville equation

Consider H as a real Hilbert space endowed with the real scalar product
Re(-, -)x. Define the space of smooth cylindrical functions on H, denoted
by €ie,i (M), as the set of all functions of the form

eyl
p=1om,
where ¢ € 65°(R™), m € N, and 7 : H — R™ the projection of the form:
(B.2) miur— w(u) = (Re(u, er)n, ..., Re(u, em)n),
where (e1,...,e,,) is an arbitrary orthonormal family of #. Similarly, one

defines for a bounded open interval I, the space of smooth cylindrical func-
tions €52, (I x H) as the set of functions ¢ such that :

0,cyl
V(tu) eI x M, ¢(t,u) =9t w(u)),
for some ¢ € €5°(I x R™), m € N, and 7 as in (B.2).

DEFINITION B.1. — Let I be a bounded open interval containing the
origin. A family of Borel probability measures {p+}ter on H is a measure-
valued solution of the Liouville equation associated to the vector field v :
R x H — H if and only if for all ¢ € 65%,,(I x H):

(B.3) Lﬁéf&¢@urﬁ%@0whva¢wwh&dMWﬁh=Q

where V4 denotes the real differential in the Hilbert space H.

The following result establishes an equivalence between Liouville equa-
tions and characteristic equations. A proof can be taken from [57, Propo-
sition 4.2].

PROPOSITION B.2 (Equivalence). — Let v : RxH — H be a continuous
vector field such that it is bounded on bounded sets. Let I > t — u; a
weakly narrowly continuous curve in 3(H) such that the following bound
holds true:

(B.4) J [ ottt uae < o

Then the two assertions below are equivalent:

(1) (pt)ter is a solution of the Liouville equation (B.3).
(2) (wt)ter solves the following characteristic equation:Vt € I,V y € H,

(B5) lut(e%riﬂ?e(y,.)H) — ,Lto(GZﬂime(y")H)

t
+2m‘/ s (€2 RV R (s, u), y)a ) ds
0
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B.3. Borel properties

Next we state some convenient Borel properties of the ensemble of solu-
tions and initial conditions for the initial value problem (IVP). Define the
space

X =H x %(1:, H),
endowed with the norm

(w0, w)llx = [luoll# + sup [Ju(t)[4-

tel
LEMMA B.3. — The ensemble of solutions
B6 - ¥ u satisfies (IVP) on I
. = ,u) e X o ..
(B.6) ! (o, ) with the initial condition ug

is a Borel subset of X.
Proof. — The maps
Tt X —H

(up, u) — u(t) —up — /0 v(s,u(s))ds,

are continuous since the vector field v is continuous, and then bounded on
bounded sets. Thus, for all t € I,

~({0)
is a Borel set. Take a dense countable set {t;};en in I, one concludes that
= (7. ({0}),
€N

since each u is a continuous curve over I and the Duhamel formula (B.1)
holds true. O

The following result of measure theory is useful. A proof can be found
in [55, Theorem 3.9].

LEMMA B.4. — Let X, and X5 be two complete separable metric spaces
and F1 C X1, Fs C Xs5. Suppose that FE; is a Borel set. Let 1 be a
measurable injective map of Ey into Xo such that ¢(FE,) = Es. Then E5 is
a Borel set of X5.

LEMMA B.5. — The ensemble of initial conditions
(B.7) Gr ={up € H:3ue €I, H) such that (up,u) € Fr}
is a Borel subset of H.
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Proof. — Note that the space ¢ (I,H) endowed with the sup norm is a
complete separable metric space. Here the separability follows by Stone—
Weierstrass theorem and Dini’s theorem. Apply Lemma B.4 with X; =
(X, [ l[x), Xo = (H, [|.[l%), the map

Y =g: X —H
(up, u) — g,

and Ey = F;, E5 = G;. Then one concludes that

o(Fr) =Gr
is a Borel subset of H. O

A crucial tool for constructing a generalized global flow is the following
probabilistic representation of measure-valued solutions to Liouville equa-
tions. Such general result is proved in [6, Proposition 4.1] (see also [2])
and justifies the existence of a probability measure 1 over H concentrated
on strong solutions of the initial value problem (5.1). Define for ¢ € I the
evaluation map =; over X as,

(B.8) Et: (ug,u) € X —> u(t) € H.
THEOREM B.6 (Probabilistic representation). — Let
telr— € PB(H)

be a weakly narrowly continuous curve in 3(H) satistying the bound (B.4)
and the Liouville equation (B.3). Then there exists a Borel probability
measure 1) over the space (X, ||.|x) satisfying:

(1) The measure 1 concentrates on the set Fr, i.e.,

77(]:[) =1
(2) For allt eI,

Mt = (:t)w

COROLLARY B.7. — Lett € I — p; € B(H) be a weakly narrowly con-
tinuous curve in P(H) satisfying the bound (B.4) and the Liouville equa-
tion (B.3). Suppose that for each uy € H, the initial value problem (IVP)
admits at most one strong solution on I. Then the ensemble of initial con-
ditions Gy in (B.7) is total with respect to uo, i.e.,

po(Gr) = 1.
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Proof. — Using Theorem B.6 one concludes
po(Gr) = (Z0)gn(Gr) = n(Ey'(G) = n(F1) = 1,
since 2,1 (Gr) D Fr. O

B.4. Existence of global flows

The following result ensures the existence of global solutions for initial
value problems under weak assumptions. In particular, we will apply such
result to the Newton-Maxwell equation while proving Theorem 1.3.

THEOREM B.8 (Generalized global flow). — Consider the initial value
problem (IVP) with H a separable Hilbert space and v : R x H — H
a continuous vector field bounded on bounded sets. Suppose (1) and (2)
below:

(1) There exists a weakly narrowly continuous curve t € R — u; €
PB(H) satistying the bound (B.4) and the Liouville equation (B.3)
on any bounded open interval I containing the origin.

(2) There exists at most one solutions of the initial value problem (IVP)
over any bounded open interval I containing the origin.

Then for pg-almost all initial conditions ug in H there exists a unique global
strong solution to the initial value problem (IVP). Moreover, the ensemble
of initial conditions

of (IVP) with the initial condition ug

there exists a global strong solution u
(B.9) G=<uyeH:

is a Borel subset of H satistying uo(G) = 1 and for any time t € R the map

q)t : g — H
ug — u(t),
is Borel measurable.
Proof. — Consider the increasing sequence of intervals I,, = (—n,n).

Then {G1, }nen is a decreasing sequence of measurable sets. So, using the
uniqueness of strong solutions one concludes that

G=1()9r..

neN
Furthermore by Corollary B.7,

po(G) = lim_ po(Gn) = 1.
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To prove the measurability of the maps ®;, recall that the projection p|z,
defined in the proof of Lemma B.5 is injective. So, p is a bijection from Fj
onto Gy and its inverse map
pil : gr — Fr
ug — (ug, u),
is measurable thanks to Lemma B.4. Hence for ¢ € R and I containing ¢,
the composition ®;, = 5, 0~ ' o I:
I et 2
®,:G —G — Fr — H
ug — ug — (ug,u) — u(t)

yields a well-defined and measurable map. O

Appendix C. Semiclassical calculus

We state some specific results on convergence towards Wigner measures
which are related to semiclassical analysis in finite and infinite dimensions.
For a related general discussion, we refer the reader to the work [8]. In
particular, Lemmas C.1 and C.2 are key arguments in establishing the con-
vergence towards the characteristic equations in Section 4.4 under optimal
regularity conditions on the density matrices (r)ne(0,1)-

LEmMA C.1. — Let (hj) jen be a sequence such that h; — 0 and (o, ) jen
a family of density matrices on ¢ satisfying (Sél)) and (S{l)). Suppose
that

(C.1) M(on,;,j €N) = {u}

for some Borel probability measure p € B(X°). Then the following asser-
tions hold true for any ¢ = (20, a9) € X° and for any f € €*(R) such
that V f is bounded,

(C.2a) Jlgglo Tr[on, W, (€) f(D)]

= [ el eVl f(p) du)
X

(C.2b) Jim Tr [on, Wi, (€) f(@)]

= [ i) VAR fq) duw)

where the variable u = (z,a) € X°.
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Proof. — The arguments for (C.2a) and (C.2b) are similar. So, we con-
sider for instance only the first limit. Note that Tr [ghj Wi, () f (]3)] is

well-defined thanks to Lemma 4.6, the assumptions (Sél)) and (S%l)) and
Taylor expansion for f which yields that there exists ¢ > 0 such that

(C.3) |f(2)] < c{z), vz e RO

Let x € €5°(R™) be a smooth function such that 0 < x < 1, x = 1 in
a neighborhood of the origin and f]Rd" x(x)dx = 1. Define respectively a
mollifier and a cutoff function for all R > 0 as

Xr(+) = R™"x(R"),
XF() = x(R7H).

For simplicity, we denote

(04) eL%m(z,ZU) e\/ﬁﬁﬁe(ao,a)ﬁg _ eLQ(f,u) )

We use an approximation argument based on the inequality:

Tr[on, Wi, (€) f()] ~ /

elQEW £ (p) d,u‘ <A+ B+C,
X0

where
A =|Tr [on, Wi, (€) (f — xr * XD B)]|

B = [T [on, Wi () i+ )] = [0 (s )0 .

C= ’/XO A (f —xr* fXT)(p) du‘ :
Now, we estimate A, B and C. Using Lemma 4.6 and assumptions (S(()l))

and (S%l)), one obtains

A< B2+ 1) on, Wi, (G + DY 210r)
16 +1)7'(F = xr * S 22 uany

_ R
< [fE = s )
zERdn |z +1
_ fyR _
< [JO= D@ 0 = xnS6)
zERIn |l’| +1 zERIn |IE|2 +1 R—0
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On the other hand, Lemma 4.12 shows that the Wigner measure y satisfies
the bound [y, (p* + ¢?) du(u) < oo . Hence one obtains

C < sup
pE]Rd"

) dp(u) — 0.

F(p) = (xr * X))
p2R+1 ‘/Xo(pz"_l

We estimate B. Since g% = yr* fxF € €5°(R™), then one can write using
the Fourier Transform and the Heisenberg—Weyl operators,

o"0) = | F@) T

= F(g®) (k)T (—2xk,0) dk
Rdn

= | F(g")(k)Wn, (—27k,0,0) dk,
Rdn

with absolutely convergent Bochner integrals in .2 (5#). Hence by Fubini’s
theorem for all £ = (p,q,a) € X0,

Tr [0, W, (€) ¢" ()]

= /.. F(g™) (k) Tt [on, Wh, (§)Wh, (—27k, 0,0)] dk

= f(gR)(k) Tr[,ghj Wh, (=27k + p, q, a)] e~ imhikp .
Rdn

So, the dominated convergence theorem, Definition 1.1 and Fubini’s theo-
rem yield

Jin Te[on, Wi, (€)9°5)) = |

. Z(g™) (k) /X ) lQEW) 2mkp g (y) dke

= [ ") 2 autu).

Therefore, the left-hand side of A is arbitrary small when choosing R suf-
ficiently large and j — oo. O

LeEMMA C.2. — Let () en be a sequence such that h; — 0 and (ox; ) jen
a family of density matrices on S satisfying (S(()l)), (Sil)). Suppose that

(C.5) M(on;,j €N) = {u}
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for some Borel probability measure p € B(X°). Then for all £ = (29, ) €
X0 and for all f € H°,
(C:6a) T Tr[on, Wh, (€)@ (/)]

j—o0

— / eigm(z,zﬁeﬂi%e(ao’wﬁo <a7 f>530 dM(u)’
X0
(C.6b)  lim Tr[on, Wi, (€) a(f)]
j—o0
= / eLSm(z,ZO>e\/§£§RC<aova>ﬁo <f7 Oé>5§0 d/.t(u)7
X0

where the variable u = (p,q,a) € X° and z = q + ip.

Proof. — We use the same notation as (C.4). By linearity, it suffices to
prove the following limits,

(CTa) i Te[on, Wi, (§) 9(/)] =2 / ¢QEW Re(a, f)go du(u),

X0

(CTb)  lim Teon, Wi, () 7(N)] =2 /X R Sm(f,a)go dp(u),

where (;AS and 7 are the fields operators defined as

(C.8) o(f) =a*(f)+a(f),  =(f)=ia"(f)—ia(f).

The arguments for (C.7a) and (C.7b) are similar; so we will consider only
the first one. Recall that ¢(ao) is a self-adjoint operator satisfying W (f) =
ev2?Y) | We will use an approximation argument based on the inequality:

Te [gn, Wh, (€) 3(f)] - 2 /

X0

el QW Re(a, fao du' <A+ B+C,
where

A= 1 o, w0 (300 - WH ‘

2 -7 . 2siRe(a, f) w0 -1
B=|Tr [th W, (€) W(\fsf)} _/ oiQ(&w) Md“‘
is X0 is
) 2siRe(a, f) 50 —1
C = / elQEw <e; — 2§Re<oz,f>f)o> d,u‘
X0 LS

The dominated convergence theorem and Lemma 4.12 imply that C' tends
to zero as s — 0 since the assumptions (S’él)) and (Sfl)) lead the bound

/ el dpt < oc.
X0
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On the other hand, for any s € R\ {0}, B vanishes when #; — 0 as a
consequence of Definition 1.1. So, it remains to prove that A can be made

arbitrary small uniformly in %; by choosing s sufficiently close to 0. In fact,
one has A < DFE, where

D = [[(Ng + 1)"205Wh, (&) (N + 1)V2]| 21 e,

E= H(Nﬁ +1)712 (@(f) - W) (Np+1)"1/2

L) .

So, according to Lemma 4.4 and assumption (Sgl)), D is uniformly bounded
with respect to f;. Moreover, Taylor expansion yields

~ W (V2 sf
o) - DL 2 [ (- wiverp)ar
and on the other hand the uniform inequality [8, Lemma 3.1] gives

1 = W2 ) (Ni 4+ 1)) ey S Il s

Hence by Lemma A.3 and the above inequalities one obtains

1 S
ES‘/ |7|ds| — 0,
S Jo s—0
uniformly with respect to &;. O
LeEMMA C.3. — Let (Rj)jen be a sequence such that h; — 0 as j — oo

and (o5, ) jen a family of density matrices on S satisfying (S((J )) and (S£1 ).
Suppose that

(C.9) M(on,;,j €N) = {u}

for some Borel probability measure u € 3(X°). Then for all £ = (29, aq) €
X% i=1,...,nand f € H°,

hm T‘I‘|:th Whj (5) a*(e—QTrLk'(ji f):|
j—ro0
:/ eL%m(z,z[ﬁ e\/ﬁﬂée{ao,a)ﬁo <a7e—2m‘k~qi f>y30 du(u),
X0
lim T 0, Wi, (§) e )|
:/ ei%m(z,z()} eﬂi%e(ao,(@ﬁo <e*27"ik'4i f, O£>530 d,u(u),
X0

where the variable u = (p,q,a) € X% and z = q + ip.

Proof. — It is a consequence of Lemma C.2. O
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LEmMA C.4. — Let (0r)re(o,1) be a family of density matrices on H
satisfying (S(()l)) and (Sﬁl)). Define

(C.10) Gn(t) = T TH L gy R,

then the family (05 (t))re(o,1) satisfies the assumption (4.10) with § = 1
and

M(en, T € (0,1)) = {(®)):h1. i € M(2n(t), i€ (0,1))},

where ®) is the free flow defined on XV as

(C.11) @{(p,q,0)

Proof. — We can assume that all the masses m; = 1. First notice that
Tr(gn(t) (N + H})) = Tr[on (N5 + Hp)),

since H % strongly commutes with the operator N 5. S0, one only needs to
verify that

Tr[or(t) §°] < oc.

The last statement follows by Lemma 3.12 and the spectral decomposition
of 5. Hence this ensures that the family (05 (t))re(0,1) satisfies the assump-
tion (4.10) with § = 1. Now take p € M(gp, i € (0,1)). Then there exists
a sequence Ay such that Ay — 0 and

M(Qhkak € N) = {‘LL}

In particular, Definition 1.1 implies that for any & = (po,qo, ) =
(ZOa Oéo) € Xov

lim Tr[gﬁkwﬁk (5)} :/ el%m(Z,Z(ﬁ eﬁi?ﬁc(ao,d),-jo d‘u(u)’
k—o00 X0

where u = (z,«). So, the latter identity yields,

T [On, ()W, (€)] = Tr |:Qﬁk ! i Wi, (€) e_iﬁ'ikﬁgk}
=Tr [Qhk Wh, (ftﬂ )
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with & = (po, go + tpo, e~ ap) = ((qo + tpo) + ipo, e~ ap) € X°. Hence
one obtains

lim TI[Z)}M (t)th (5)] :/ ei%m(Z,Zo(t))eﬂé%e{ao(t),a>ﬁo du(u)
k—o0 X0
= [ i) VARl 4(@0 o)

where u = (z, ), z0(t) = (qo + tpo) + ipo and ag(t) = e~ . Note that
we have used for all u = (z,a) = (p,q, ) € X" and t € R,

Sm(q + ip, 20(t)) = Sm(q — tp + ip, 20),
Rela, ap(t)) go = Rele™ a, ) go.
Therefore M(gy, (t),k € N) = {} and r = ()3 hold true. This proves
M(en,h € (0,1)) C {(®9)4f1, o € M(2n,h € (0,1))} .

On the other hand, starting from g € M(o,(t),h € (0,1)) and mimicking
the same argument one shows the opposite inclusion. O
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