[Sur les estimations $L^p$ des transformées de Riesz associées aux opérateurs de Schrödinger et préservant la positivité]
We study the $L^{p},$ $1\leqslant p\leqslant \infty ,$ boundedness for Riesz transforms of the form $V^{a}(-\frac{1}{2}\Delta +V)^{-a},$ where $a>0$ and $V$ is a non-negative potential. We prove that $V^{a}(-\frac{1}{2}\Delta +V)^{-a}$ is bounded on $L^p(\mathbb{R}^d)$ with $1< p\leqslant 2$ whenever $a\leqslant 1/p.$ We demonstrate that the $L^{\infty }(\mathbb{R}^d)$ boundedness holds if $V$ satisfies an $a$-dependent integral condition that is resistant to small perturbations. Similar results with stronger assumptions on $V$ are also obtained on $L^{1}(\mathbb{R}^d).$ In particular our $L^{\infty }$ and $L^1$ results apply to non-negative locally bounded potentials $V$ which globally have a power growth or an exponential growth.
We also discuss a counterexample showing that the $L^{\infty }(\mathbb{R}^d)$ boundedness may fail.
Nous étudions le caractère borné sur $L^p$, $1 \leqslant p \leqslant \infty $, pour les transformées de Riesz de la forme $V^{a}(-\frac{1}{2}\Delta +V)^{-a},$ où $a>0$ et $V$ est un potentiel non-négatif. Nous prouvons que $V^{a}(-\frac{1}{2}\Delta +V)^{-a}$ est bornée sur $L^p(\mathbb{R}^d)$ avec $1< p\leqslant 2$ quand $a\leqslant 1/p.$ Nous démontrons que le caractère borné sur $L^{\infty }(\mathbb{R}^d)$ est valable si $V$ satisfait une condition intégrale dépendante de $a$ et robuste aux petites perturbations. Des résultats similaires avec des hypothèses plus fortes sur $V$ sont également obtenus sur $L^{1}(\mathbb{R}^d).$ En particulier, nos résultats $L^{\infty }$ et $L^1$ s’appliquent aux potentiels non négatifs et localement bornés $V$ qui ont globalement une croissance en puissance ou une croissance exponentielle.
Nous discutons également d’un contre-exemple montrant que le caractère borné sur $L^{\infty }(\mathbb{R}^d)$ peut échouer.
Révisé le :
Accepté le :
Première publication :
Keywords: Riesz transform, Schrödinger operator, $L^p$ boundedness
Mots-clés : Transformée de Riesz, Opérateur de Schrödinger, borne $L^p$
Kucharski, Maciej  1 ; Wróbel, Błażej  2 , 1
@unpublished{AIF_0__0_0_A32_0,
author = {Kucharski, Maciej and Wr\'obel, B{\l}a\.zej},
title = {On $L^p$ estimates for positivity-preserving {Riesz} transforms related to {Schr\"odinger} operators},
journal = {Annales de l'Institut Fourier},
year = {2025},
publisher = {Association des Annales de l{\textquoteright}institut Fourier},
doi = {10.5802/aif.3744},
language = {en},
note = {Online first},
}
TY - UNPB AU - Kucharski, Maciej AU - Wróbel, Błażej TI - On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators JO - Annales de l'Institut Fourier PY - 2025 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3744 LA - en ID - AIF_0__0_0_A32_0 ER -
%0 Unpublished Work %A Kucharski, Maciej %A Wróbel, Błażej %T On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators %J Annales de l'Institut Fourier %D 2025 %V 0 %N 0 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3744 %G en %F AIF_0__0_0_A32_0
Kucharski, Maciej; Wróbel, Błażej. On $L^p$ estimates for positivity-preserving Riesz transforms related to Schrödinger operators. Annales de l'Institut Fourier, Online first, 42 p.
[1] Riesz transforms of Schrödinger operators on manifolds, J. Geom. Anal., Volume 22 (2012) no. 4, pp. 1108-1136 | DOI | MR | Zbl
[2] Maximal inequalities and Riesz transform estimates on spaces for Schrödinger operators with nonnegative potentials, Ann. Inst. Fourier, Volume 57 (2007) no. 6, pp. 1975-2013 | DOI | MR | Numdam | Zbl
[3] Boundedness of the Riesz transform related to Schrödinger operators on a manifold, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 8 (2009) no. 4, pp. 725-765 | MR | Numdam | Zbl
[4] Sobolev spaces associated to the harmonic oscillator, Proc. Indian Acad. Sci., Math. Sci., Volume 116 (2006) no. 3, pp. 337-360 | DOI | MR | Zbl
[5] Stochastic Processes, Probability and Its Applications, Birkhäuser, 2017 | MR | Zbl | DOI
[6] Harmonic analysis on semigroups, Ann. Math., Volume 117 (1983), pp. 267-283 | DOI | Zbl
[7] Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1989 | DOI | MR | Zbl
[8] The estimates of Riesz transforms associated to Schrödinger operators, J. Aust. Math. Soc., Volume 101 (2016) no. 3, pp. 290-309 | DOI | MR | Zbl
[9] Heat kernel and Riesz transform of Schrödinger operators, Ann. Inst. Fourier, Volume 69 (2019) no. 2, pp. 457-513 | DOI | MR | Numdam | Zbl
[10] On a formula of Takács for Brownian motion with drift, J. Appl. Probab., Volume 35 (1998) no. 2, pp. 272-280 | DOI | MR | Zbl
[11] A note on Schrödinger operators with polynomial potentials, Colloq. Math., Volume 78 (1998) no. 1, pp. 149-161 | DOI | MR | Zbl
[12] Sobolev spaces related to Schrödinger operators with polynomial potentials, Math. Z., Volume 262 (2009), pp. 881-894 | DOI
[13] Hardy spaces for Schrödinger operators with compactly supported potentials, Ann. Mat. Pura Appl., Volume 184 (2005), pp. 315-326 | DOI | MR | Zbl
[14] Resolution of a semilinear equation in , Proc. R. Soc. Edinb., Sect. A, Math., Volume 96 (1984) no. 3-4, pp. 275-288 | DOI | MR | Zbl
[15] Classical Fourier Analysis, Springer, 2008 | DOI | Zbl
[16] -Theory of Schrödinger Operators with a Singular Potential, Aspects of positivity in functional analysis (North-Holland Mathematics Studies), Volume 122, North-Holland, 1986, pp. 63-78 | Zbl
[17] Dimension-free estimates for Riesz transforms related to the harmonic oscillator, Colloq. Math., Volume 165 (2021) no. 1, pp. 139-161 | DOI | MR | Zbl
[18] Feynman–Kac-Type Theorems and Gibbs Measures on Path Space. With applications to rigorous quantum field theory, De Gruyter Studies in Mathematics, 34, Walter de Gruyter, 2011 | DOI | Zbl | MR
[19] NIST Handbook of Mathematical Functions (Olver, Frank.; Lozier, Daniel; Boisvert, Ronald; Clark, Charles, eds.), Cambridge University Press, 2010 | Zbl
[20] Brownian motion and classical potential theory, Academic Press Inc., 1978 | MR | Zbl
[21] estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier, Volume 45 (1995) no. 2, pp. 513-546 | DOI | MR | Numdam | Zbl
[22] Riesz transforms, Gaussian bounds and the method of wave equation, Math. Z., Volume 247 (2004), pp. 643-662 | DOI | MR | Zbl
[23] BMO results for operators associated to Hermite expansions, Ill. J. Math., Volume 49 (2005), pp. 1111-1131 | MR | Zbl
[24] The Feynman–Kac Formula and Semigroups, Brownian Motion, Obstacles and Random Media (Springer Monographs in Mathematics), Springer, 1998, pp. 3-37 | DOI | MR
[25] On a generalization of the arc-sine law, Ann. Appl. Prob., Volume 6 (1996) no. 3, pp. 1035-1040 | MR | Zbl
[26] Lectures on Hermite and Laguerre expansions, Mathematical Notes, 42, Princeton University Press, 1993 | Zbl | MR
[27] Dimension free estimates for Riesz transforms of some Schrödinger operators, Isr. J. Math., Volume 173 (2009), pp. 157-176 | DOI | MR | Zbl
Cité par Sources :
