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ON Lp ESTIMATES FOR POSITIVITY-PRESERVING
RIESZ TRANSFORMS RELATED TO SCHRÖDINGER

OPERATORS

by Maciej KUCHARSKI & Błażej WRÓBEL (*)

Abstract. — We study the Lp, 1 ⩽ p ⩽ ∞, boundedness for Riesz transforms
of the form V a(− 1

2 ∆ + V )−a, where a > 0 and V is a non-negative potential.
We prove that V a(− 1

2 ∆ + V )−a is bounded on Lp(Rd) with 1 < p ⩽ 2 whenever
a ⩽ 1/p. We demonstrate that the L∞(Rd) boundedness holds if V satisfies an
a-dependent integral condition that is resistant to small perturbations. Similar
results with stronger assumptions on V are also obtained on L1(Rd). In particular
our L∞ and L1 results apply to non-negative locally bounded potentials V which
globally have a power growth or an exponential growth.

We also discuss a counterexample showing that the L∞(Rd) boundedness may
fail.

Résumé. — Nous étudions le caractère borné sur Lp, 1 ⩽ p ⩽ ∞, pour les
transformées de Riesz de la forme V a(− 1

2 ∆+V )−a, où a > 0 et V est un potentiel
non-négatif. Nous prouvons que V a(− 1

2 ∆ + V )−a est bornée sur Lp(Rd) avec
1 < p ⩽ 2 quand a ⩽ 1/p. Nous démontrons que le caractère borné sur L∞(Rd)
est valable si V satisfait une condition intégrale dépendante de a et robuste aux
petites perturbations. Des résultats similaires avec des hypothèses plus fortes sur
V sont également obtenus sur L1(Rd). En particulier, nos résultats L∞ et L1

s’appliquent aux potentiels non négatifs et localement bornés V qui ont globalement
une croissance en puissance ou une croissance exponentielle.

Nous discutons également d’un contre-exemple montrant que le caractère borné
sur L∞(Rd) peut échouer.

1. Introduction

In this paper we consider a class of Riesz transforms related to the
Schrödinger operator

L = −1
2∆ + V,

Keywords: Riesz transform, Schrödinger operator, Lp boundedness.
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with V being a non-negative potential in L1
loc. The operator L is rigor-

ously defined via quadratic forms, see Section 2. The Riesz transforms are
formally given, for a > 0, by

(1.1)
Ra

V f(x) = V a(x) ·
(
− 1

2 ∆ + V
)−a

f(x)

= V a(x)
Γ(a) ·

∫ ∞

0
e−tLf(x) ta−1dt,

where e−tL is the corresponding semigroup. We also set R0
V to be the

identity operator. By the Trotter product formula the operators Ra
V are

positivity preserving, unlike the Riesz transforms ∇L−1/2, which we do
not study here. One can also see, cf. Proposition 2.4, that for V ∈ L1

loc and
a = 1

2 the formal expression (1.1) gives rise to a contraction on L2(Rd).
For a general non-negative potential V ∈ L1

loc we also know the L1(Rd)
boundedness of R1

V , see for example [2, 14, 16]. Note that, apart from the
case when V is constant, neither R1/2

V nor R1
V is a convolution operator.

Apart from the cases a = 1
2 and a = 1 there seem to be no Lp bounded-

ness results for Riesz transforms Ra
V of general potentials V ∈ L1

loc. For V
belonging to a reverse Hölder class Lp boundedness of Ra

V , 0 < a < 1, is
mentioned in [2, p. 1978]. We prove the following general result.

Theorem A (Theorem 2.6). — Let V ∈ L1
loc and take p ∈ (1, 2]. Then

for all 0 ⩽ a ⩽ 1/p the Riesz transform Ra
V is bounded on Lp.

Theorem A is derived as a consequence of the endpoint bounds for R1/2
V

on L2(Rd) (Proposition 2.4) and for R1
V on L1(Rd) ([2, Theorem 4.3], see

also [14, 16]) together with the interpolation result given below.

Theorem B (Theorem 2.5). — Let a0 > 0 and a1 > 0. Assume that
V ∈ L1

loc is such that Ra1
V is bounded on Lp1 for some p1 ∈ [1,∞) and Ra0

V

is bounded on L1. Then, Ra
V is bounded on Lp for every p and a such that

1/p = θ + (1 − θ)/p1 and a = θa0 + (1 − θ)a1 with some θ ∈ (0, 1).

The above theorem is proved via Stein’s complex interpolation theorem.
It is worth emphasizing that when p ∈ (1, 2] the boundedness of Ra

V stated
in Theorem A holds not only for a = 1/p but for all smaller a as well. This
follows from Theorem B together with Corollary 2.3. However, this may be
no longer true when p = 1. The reason behind is eminent in the proof of
Theorem B (Theorem 2.5); namely, the imaginary powers Liu, u ∈ R, are
bounded on Lp, p ∈ (1, 2], but are unbounded on L1.

The main purpose of our paper is to study the L∞ and L1 boundedness of
Ra

V for specific classes of non-negative potentials V . We focus on obtaining
results for which only large values of x matter and which are resistant to
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RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS 3

small perturbations of the potential V. Considering the L∞ boundedness
of Ra

V two particular cases of V serve as a good example of the possible
situation. Firstly, if V is a non-negative constant function, say V = c, then
L = − ∆

2 + c and by (1.1) we have

Ra
cf = ca

Γ(a)

∫ ∞

0
e−tcta−1et∆/2f dt.

Therefore, using the L∞ contractivity of the heat semigroup et∆ we easily
see that Ra

c is bounded on L∞. Secondly, if d ⩾ 3 and V ∈ Lq, q > d/2,
is a non-zero compactly supported function, then Ra

V is unbounded on L∞

for all a > 0, see Proposition 3.3. Thus, the fact that V does not vanish
outside a compact set is necessary for the boundedness of Ra

V on L∞.

In what follows for two functions A,B : Rd → [0,∞) by A(x) ≈ B(x) we
mean that for almost all x ∈ Rd we have cA(x) ⩽ B(x) ⩽ CA(x) with two
universal constants 0 < c < C. We say that A ≈ B globally if A(x) ≈ B(x)
for almost every x outside a compact set. The main classes of examples on
L∞(Rd) which our theory admits are given below.

Theorem C. — Let V : Rd → [0,∞) be a function in L∞
loc. Then in all

the three cases
(1) V (x) ≈ 1 globally
(2) For some α > 0 we have V (x) ≈ |x|α globally
(3) For some β > 1 we have V (x) ≈ β|x| globally

each of the Riesz transforms Ra
V , a > 0, is bounded on L∞(Rd).

What lies at the heart of the proof of Theorem C is the Feynman–Kac
formula. Theorem C is restated as Corollary 4.6 in Section 4, where it is
deduced from Theorem 4.5. In order to apply Theorem 4.5 we need to
verify two assumptions. Firstly V must be strictly positive far away along
a line in Rd. In this case Lemma 4.1 guarantees an exponential decay of
the semigroup e−tL on L∞(Rd). Secondly, we assume a specific interplay
between the value V (x) and the speed at which V (y) decreases for y in a
ball around x. The interplay is captured in condition (4.24) (the quantity
Ia(V )(x) being defined in (4.8)). It is easily verified that the assumptions
of Theorem 4.5 are met in all the cases (1), (2), (3) of Theorem C.

We also prove an L1(Rd) counterpart of Theorem C

Theorem D. — Let V : Rd → [0,∞) be a function in L∞
loc. Then in all

the three cases
(1) V (x) ≈ 1 globally
(2) For some α > 0 we have V (x) ≈ |x|α globally

TOME 0 (0), FASCICULE 0
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(3) For some β > 1 we have V (x) ≈ β|x| globally

each of the Riesz transforms Ra
V , a > 0, is bounded on L1(Rd).

The proof of Theorem D also makes extensive use of the Feynman–Kac
formula. However, such an approach seems better suited to L∞(Rd) es-
timates and thus the route to Theorem D is more complicated than in
Theorem C. All the needed ingredients are justified in Section 5. Theo-
rem D is restated there as Corollary 5.6 and the results needed to prove
this corollary include Theorem 5.4 and Theorem 5.5. Note that in these
results apart from condition (4.24) we need to control the speed at which
V (y) increases for y in a ball around x relative to the value of V (x). This
is similar to the conditions assumed in the case of L∞ bounds.

Using Theorems C and D for a = 1, together with the argument from [27,
Proof of Corollary 1.4, p. 174–175], we may also obtain Lp(Rd), 1 < p < ∞,
boundedness of the Riesz transforms |∇L−1/2f |; here ∇ denotes the usual
gradient on Rd. As this is aside the main considerations of our paper we
do not pursue it here.

The topic of Riesz transforms related to Schrödinger operators has been
considered by a number of authors, both on Rd and on more general mani-
folds, see [1, 2, 3, 8, 9, 11, 12, 22, 27]. In the context of the Riesz transforms
Ra

V the case a = 1
2 has attracted most attention. For a general V ∈ L2

loc

it is known that R1/2
V is bounded on the Lp(Rd) spaces 1 < p ⩽ 2, see

Sikora [22, Theorem 11]. Our Theorem A extends the Lp(Rd) boundedness
to Ra

V for a ⩽ 1/p. When the potential V is in the reverse Hölder class
Bq for some q ⩾ d/2, then Shen proved that R1/2

V is bounded on Lp(Rd),
1 ⩽ p ⩽ 2q, see [21, Theorem 5.10], and that R1

V is bounded on Lp(Rd),
1 ⩽ p ⩽ q, see [21, Theorem 3.1]. Both results were later improved by
Auscher and Ben Ali, see [2, Theorem 1.1 and Theorem 1.2] to 1 < q ⩽ ∞.
In particular this is true for V being a non-negative polynomial on Rd. In
fact, for such a V the Riesz transforms Ra

V , a ⩾ 0, are bounded both on
L1(Rd) and L∞(Rd); this was proved by Dziubański [11, Theorem 4.5]. His
proof uses nilpotent Lie group techniques for which it is important that V is
a polynomial. Moreover, in the particular case of V (x) = |x|2 Bongioanni
and Torrea [4, Lemma 3] proved the Lp(Rd), 1 ⩽ p ⩽ ∞, boundedness
of Ra

V for all a > 0 by using explicitly the Mehler formula. Our proofs
of Theorems C and D do not require explicit formulas and the examples
listed there are resistant to small perturbations; for instance, we may take
V (x) = |x|α + E(x) with α > 0, whenever the error term E is a locally
bounded function of a lower order than |x|α for large values of |x|.

ANNALES DE L’INSTITUT FOURIER
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The L∞ boundedness of R1
V was addressed by Urban and Zienkiewicz

in [27]. In [27, Theorem 1.1] the authors proved the L∞(Rd) boundedness of
R1

V under the assumption that V is a non-negative polynomial satisfying a
certain condition of C. Fefferman. This condition is of an algebraic nature.
The estimates depend only on properties of the polynomial V and are inde-
pendent of the dimension. Recently, the first author proved a dimension-free
L∞ bound for R1/2

V in the particular case of V (x) = |x|2 and L being the
harmonic oscillator, see [17, Theorem 8]. In fact it is proved there that
the L∞ norm of R1/2

|x|2 is less than 3. It is not clear whether one can prove
dimension-free results on L∞ as in [27] or [17] for R1

V or R1/2
V for more

general classes of potentials V . We hope to return to this topic in the near
future.

It is perhaps noteworthy that in order to conclude the Lp(Rd), p > 2,
boundedness of R1/2

V , R1
V or |∇L−1/2| the results available in the literature

require that V satisfies at least a reverse Hölder condition. Such a V must
then be a doubling weight. This is not required in our approach, for instance
V (x) = β|x| is clearly non-doubling yet Theorems C and D apply.

We shall now describe the structure of our paper. Section 2 starts with
definitions of the objects appearing throughout the paper. Then we prove
several interpolation results for the Riesz transforms Ra

V , see Theorems 2.2
and 2.5 and Corollary 2.3. As an application, in Theorem 2.6 we obtain Lp

boundedness of Ra
V for general non-negative potentials V ∈ L2

loc within the
range 1 < p ⩽ 2, 0 ⩽ a ⩽ 1/p. In Section 4 we prove Theorem 4.5 which
gives sufficient conditions for the L∞ boundedness of Ra

V and then we apply
it to prove Theorem C. Section 5 is devoted to proving Theorems 5.4, 5.5
and 5.8 in which we present different conditions on V , a and p guaranteeing
the L1 boundedness of Ra

V and as a corollary Theorem D is proved.

Notation

Throughout the paper for 1 ⩽ p ⩽ ∞ we denote by Lp the Lp(Rd) space
with respect to the d-dimensional Lebesgue measure. For a function f ∈ Lp

we write ∥f∥p := ∥f∥Lp(Rd). Similar notation is also used for a bounded
linear operator T on Lp; by ∥T∥p we denote its norm. Although this is a
slight collision of symbols it will cause no confusion later. For a Lebesgue-
measurable subset A ⊆ Rd we denote by |A| its Lebesgue measure. We say
that f is a finitely simple function if it is a simple function supported in a
compact subset of Rd. Such functions are clearly dense in Lp, 1 ⩽ p < ∞.

For a set A we denote by 1A its characteristic function. The symbol 1

TOME 0 (0), FASCICULE 0
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stands for the constant function 1. For 1 ⩽ p ⩽ ∞ we denote by Lp
loc

the space of functions which are locally in Lp. For f ∈ L1
loc we denote

by supp f its essential support. The space of smooth compactly supported
functions on Rd is denoted by C∞

c . For x ∈ Rd and r > 0 we denote by
B(x, r) := {y ∈ Rd : |x− y| ⩽ r} the closed Euclidean ball of radius r.

The symbol C□ denotes a non-negative constant that depends only on
the parameter □. The exact value of C□ may change from one occurrence
to another. We write C without subscript when the constant is universal in
the sense that it may only depend on the dimension d or on the parameter
of the Riesz transform a > 0.

It will be convenient to introduce an asymptotic notation. For two non-
negative quantities A,B we write A ≲ B (A ≳ B) if there is an absolute
constant C > 0 such that A ⩽ CB (A ⩾ CB). We will write A ≈ B when
A ≲ B and A ≳ B. In particular, if A = A(x) and B = B(x) are two non-
negative functions on Rd then by A ≲ B we mean that A(x) ⩽ CB(x) for
almost all x ∈ Rd; similar convention is applied to the symbols ≳ and ≈ .

We say that a function B : Rd → [0,∞) controls a function A : Rd → [0,∞)
globally if there exists a compact set F such that A(x) ⩽ B(x) for almost
all x ̸∈ F. In this case we write A ⩽g B. Similarly, we say that any of the
conditions A ≲ B, A ≳ B or A ≈ B holds globally if there exists a compact
set F such that A(x) ≲ B(x), A(x) ≳ B(x) or A(x) ≈ B(x), respectively,
hold for almost every x ̸∈ F. In this case we write, respectively, A ≲g B,

A ≳g, and A ≈g B.

For a random variable X defined on a probability space (Ω,F ,P) and
A ⊆ R we denote P(X ∈ A) := P({ω ∈ Ω : X(ω) ∈ A}). We abbreviate
almost everywhere and almost every to a.e..

Acknowledgments

We are most grateful to the anonymous referee for the careful reading of
the paper and helpful suggestions which helped us to improve considerably
the manuscript.

2. Definitions and general results on Lp, 1 ⩽ p < ∞

The main goal of this section is to define the Riesz transforms Ra
V , a > 0,

on Lp and to prove Lp boundedness results for these operators valid for
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general classes of non-negative potentials V. Throughout this section we
take 1 ⩽ p < ∞. The case of p = ∞ is addressed in the next section.

Our general definition on Lp will be based on semigroups related to
− 1

2 ∆ + V that are given by the spectral theorem. Let V ∈ L1
loc be an a.e.

non-negative potential. This assumption is in force throughout the paper
even if this is not stated explicitly. Whenever we write V (x) we mean the
value at x of a particular representative of the equivalence class of V in the
space L1

loc. The same is true for any expression in which similar ambiguity
may arise. We follow closely the approach in [2, Section 3] (see also [7])
and define the Schrödinger operator L via quadratic forms. Consider the
sesquilinear form

(2.1) Q(u, v) =
∫
Rd

1
2 ⟨∇u,∇v⟩ + V uv

on the domain

Dom(Q) = {f ∈ L2 : ∇f ∈ L2 and V 1/2f ∈ L2},

where ∇f denotes the distributional gradient of f . We equip the domain
with the norm

∥f∥V =
(

∥f∥2
2 + 1

2 ∥∇f∥2
2 +

∥∥∥V 1/2f
∥∥∥2

2

)1/2
,

which turns it into a Hilbert space with C∞
c (Rd) as a dense subspace. Since

Q is bounded below and non-negative, there is a unique positive self-adjoint
operator L such that

⟨Lu, v⟩ = Q(u, v), u ∈ Dom(L), v ∈ Dom(Q)

and its square root L1/2, defined on Dom(L1/2) = Dom(Q), satisfies

(2.2)
∥∥∥L1/2f

∥∥∥2

2
= 1

2 ∥∇f∥2
2 +

∥∥∥V 1/2f
∥∥∥2

2
, f ∈ C∞

c (Rd).

By [2, Section 3] the semigroup e−tL is positivity-preserving and pointwise
dominated by the heat semigroup, hence it is a contraction on Lp for 1 ⩽
p ⩽ ∞.

Let a > 0. For f ∈ Lp, 1 ⩽ p < ∞, and ε > 0 we define

(2.3) (L+ εI)−af := 1
Γ(a)

∫ ∞

0
e−tLf ta−1e−εt dt,

Since the semigroup e−tL is a strongly continuous semigroup of contractions
on Lp, the integral in (2.3) is well defined as a Bochner integral on Lp. It is
also not hard to see that for f ∈ L2 the operator defined by (2.3) coincides

TOME 0 (0), FASCICULE 0
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with (L + εI)−a given by the spectral theorem. Moreover, if f is an a.e.
non-negative function in Lp then

L−af(x) := lim
ε→0+

1
Γ(a)

∫ ∞

0
e−tLf(x) ta−1e−εt dt,

exists x-a.e. as a monotone pointwise limit being finite or infinite. In either
case

L−af(x) = 1
Γ(a)

∫ ∞

0
e−tLf(x) ta−1 dt,

by the monotone convergence theorem. For a > 0 and a non-negative func-
tion f ∈ Lp we let

(2.4) Ra
V f(x) := V a(x)L−af(x), x ∈ Rd.

This is well defined x-a.e. though possibly equal to infinity. Additionally,
for a = 0 we set R0

V to be 1V ̸=0 times the identity operator.

Definition 2.1. — Let 1 ⩽ p < ∞ and a > 0. We say that the Riesz
transform Ra

V is bounded on Lp if there is a constant C > 0 such that

∥Ra
V f∥p ⩽ C∥f∥p,

for all non-negative finitely simple functions f ∈ Lp.

Note that if Ra
V is bounded on Lp, then for each finitely simple function

f the quantity Ra
V |f | given by (2.4) is finite for a.e. x ∈ Rd. Since |e−tLf | ⩽

e−tL|f | we see that in this case

V a(x)
∫ ∞

0
e−tLf(x) ta−1 dt

is finite x-a.e.. Thus, whenever Ra
V is bounded on Lp the integral above is

a natural definition of Ra
V f, first for finitely simple functions and then, by

density, for arbitrary functions in Lp.
Using Stein’s complex interpolation theorem and functional calculus for

symmetric contraction semigroups [6] we now prove an interpolation result
for the operators Ra

V . Similar method was applied in [2, Section 6]. There
the authors proved the Lp boundedness of R1/2

V for 1 < p < 2(q+ε) by using
Stein’s complex interpolation theorem together with the Lp boundedness of
R1

V . They considered non-negative potentials belonging to a reverse Hölder
class Bq.

Theorem 2.2. — Let 0 ⩽ a0 < a1. Assume that V ∈ L1
loc is an a.e. non-

negative potential such that Ra0
V is bounded on Lp0 and Ra1

V is bounded on
Lp1 for some p0, p1 ∈ (1,∞). Then, Ra

V is bounded on Lp for every p and
a such that 1/p = θ/p0 + (1 − θ)/p1 and a = θa0 + (1 − θ)a1 with some
θ ∈ (0, 1).

ANNALES DE L’INSTITUT FOURIER



RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS 9

Proof. — Let ε > 0 and denote F (ε) := {x ∈ Rd : ε < V (x) < ε−1}. It is
enough to justify that

Ra,εf(x) := (1F (ε)V
a)(x) · 1

Γ(a)

∫ ∞

0
e−tLf(x) ta−1e−εt dt,

satisfies for all simple functions f the bound

(2.5) ∥Ra,εf∥p ⩽ C∥f∥p,

uniformly in ε > 0 and with C > 0 being a constant. Indeed, if (2.5) holds,
then taking ε → 0+ we obtain the Lp boundedness of Ra

V , first (with the
aid of monotone convergence theorem) for non-negative simple functions
and then for all functions in Lp.

Thus, in the remainder of the proof we fix ε > 0 and focus on justify-
ing (2.5). Denote S = {z ∈ C : a0 < Re z < a1}. Then, for z ∈ S and ε > 0
the function mε

z(λ) = (λ+ ε)−z is a bounded function on [0,∞), hence, by
the spectral theorem (L + εI)−z is well defined as a bounded operator on
L2. We let

(2.6) Tzf := (1F (ε)V
z) · (L+ εI)−zf, f ∈ L2.

Since (L+ εI)−b given by the spectral theorem coincides with

1
Γ(b)

∫ ∞

0
e−tLf tb−1e−εt dt,

for every b > 0, we have

Rb,εf = Tbf, f ∈ L2.

Thus, in order to justify (2.5) it suffices to prove a uniform in ε > 0 bound
for the Lp norm of Ta.

This will be achieved by Stein’s complex interpolation theorem. Note
first that for f, g being finitely simple functions the pairing

h(z) = ⟨Tzf, g⟩, z ∈ S,

gives a function which is holomorphic in S. To see this observe that (2.3)
still holds with complex a ∈ S. Combining this observation with the defini-
tion (2.6) of Tz it is easy to see that h is indeed holomorphic. Additionally,
the spectral theorem implies the bound

|h(z)| ⩽ C(ε, f, g),

valid for z ∈ S. Altogether {Tz}z∈S is an analytic family of operators of
admissible growth.

TOME 0 (0), FASCICULE 0
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It remains to bound the operator Tz for Re z = a0 and Re z = a1; this is
the place where we use the assumptions on R

aj

V . Writing, for z = aj + iτ,

τ ∈ R, j = 0, 1,

Tz = (1F (ε)V
z) · (L+ εI)−z = (1F (ε)V

iτ )Taj
(L+ εI)−iτ

we see that

(2.7) ∥Tz∥pj ⩽ ∥Taj ∥pj ∥(L+ εI)−iτ ∥pj .

Since (L + εI) generates a symmetric contraction semigroup and pj ∈
(1,∞), by e.g. [6] the imaginary powers (L+ εI)−iτ satisfy

(2.8) ∥(L+ εI)−iτ ∥pj ≲ eπ|τ |/2,

uniformly in ε > 0. Moreover, we have

|Taj
(f)(x)| = |Raj ,εf(x)| ⩽ R

aj

V |f |(x), x ∈ Rd.

Thus, coming back to (2.7) and using our assumptions on the Lpj bound-
edness of Raj

V we obtain, for z = aj + iτ, j = 0, 1,

∥Tz∥pj ≲ eπ|τ |/2, τ ∈ R.

In conclusion, applying Stein’s complex interpolation theorem, see e.g.
[15, Theorem 1.3.7], we obtain the Lp boundedness of Ra

V . □

Theorem 2.2 immediately leads to the following corollary.

Corollary 2.3. — Let a0 ⩾ 0, a1 ⩾ 0, and assume that both Ra1
V and

Ra2
V are bounded on Lp for some 1 < p < ∞. Then Ra

V is bounded on Lp

for every a0 ⩽ a ⩽ a1.

Proof. — We apply Theorem 2.2 with p0 = p1 = p. □

It is straightforward to see that the Riesz transform R
1/2
V is bounded on

L2. Using Corollary 2.3 we now extend the L2 boundedness to the operators
Ra

V with 0 ⩽ a ⩽ 1
2 .

Proposition 2.4. — Let V ∈ L1
loc(Rd) be an a.e. non-negative poten-

tial. If 0 ⩽ a ⩽ 1
2 , then Ra

V extends to a contraction on L2(Rd).

Proof. — By formula (2.2) we have∥∥∥V 1/2f
∥∥∥

2
⩽
∥∥∥L1/2f

∥∥∥
2
, f ∈ C∞

c ;

here L1/2 is the self-adjoint operator with domain Dom(L1/2) = Dom(Q),
while Q is the sesquilinear form given by (2.1). Using the fact that self-
adjoint operators are closed we get Dom(L1/2) ⊆ Dom(V 1/2) and

(2.9)
∥∥∥V 1/2f

∥∥∥
2
⩽
∥∥∥L1/2f

∥∥∥
2
, f ∈ Dom(L1/2).
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For each fixed ε > 0 the operator (L + εI)−1/2 is bounded on L2 by the
spectral theorem. Taking f = (L+ εI)−1/2g with g ∈ L2 in (2.9) we get

(2.10)
∥∥∥V 1/2(L+ εI)−1/2g

∥∥∥
2
⩽
∥∥∥L1/2(L+ εI)−1/2g

∥∥∥
2
, g ∈ L2.

If g is a non-negative function on L2 then by definitions (2.3), (2.4) and the
monotone convergence theorem we have limε→0+

∥∥V 1/2(L+ εI)−1/2g
∥∥

2 =
∥R1/2

V g∥2. The right-hand side of (2.10) converges to ∥g∥2 as ε → 0+ by
the spectral theorem. Therefore we justified that ∥R1/2

V g∥2 ⩽ ∥g∥2 for non-
negative g ∈ L2. This implies that R1/2

V is a contraction on L2.

At this stage an application of Corollary 2.3 shows that Ra
V is bounded

on L2 whenever 0 ⩽ a ⩽ 1/2. The contractivity of Ra
V is not a direct

consequence of the corollary. However, it is easy to justify once we follow
the proof of Theorem 2.2 and enhance inequality (2.8) to

∥(L+ εI)−iτ ∥2 ⩽ 1, τ ∈ R.

We omit details here. □

When p0 = 1 we have a slightly weaker variant of Theorem 2.2 with the
restriction a0, a1 > 0. This is due to the unboundedness of the imaginary
powers Liτ , τ ∈ R, on L1.

Theorem 2.5. — Let a0 > 0 and a1 > 0. Assume that V ∈ L1
loc is such

that Ra1
V is bounded on Lp1 for some p1 ∈ [1,∞) and Ra0

V is bounded on L1.

Then, Ra
V is bounded on Lp for every p and a such that 1/p = θ+(1−θ)/p1

and a = θa0 + (1 − θ)a1 with some θ ∈ (0, 1).

Proof. — The proof is similar to that of Theorem 2.2. For ε > 0 we
define the sets F (ε) and the operators Ra,ε as in that proof. Once again it
suffices to justify (2.5).

Assume without loss of generality that a0 < a1, let S = {z ∈ C : a0 <

Re z < a1} and define the family of operators {Tz}z∈S as in (2.6). Since
this time a0 > 0 the formula

(2.11) Tzf = (1F (ε)V
z) · 1

Γ(z)

∫ ∞

0
e−tLf tz−1e−εt dt, f ∈ L2,

holds for z ∈ S. Moreover, {Tz}z∈S is a family of analytic operators of
admissible growth; this can be justified as in the proof of Theorem 2.2.
Hence, in order to apply Stein’s complex interpolation theorem it remains
to bound ∥Tz∥pj

for z = aj + iτ, j = 0, 1. Using (2.11) and the asymptotics
for the Gamma function |Γ(aj + iτ)| ≈ |τ |aj−1/2e−π|τ |/2, see [19, 5.11.9],
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12 Maciej KUCHARSKI & Błażej WRÓBEL

we obtain the pointwise bound

|Tzf(x)| ≲ eπ|τ |(1F (ε)V
aj )(x) ·

∫ ∞

0
e−tL|f |(x) taj−1e−εt dt

≲ eπ|τ |R
aj

V |f |(x),

valid for z = aj + iτ, j = 0, 1. Hence, the L1 boundedness of Ra0
V together

with the Lp1 boundedness of Ra1
V give

∥Tz∥1 ≲ eπ|τ |, z = a0 + iτ, τ ∈ R,

and
∥Tz∥p1 ≲ eπ|τ |, z = a1 + iτ, τ ∈ R.

Thus, using Stein’s complex interpolation theorem, we complete the
proof. □

Analogously to the L2 case one particular Riesz transform R1
V is always

bounded on L1, see [2, Theorem 4.3] and [14, 16]. Interpolating this result
with Proposition 2.4 we obtain the following theorem.

Theorem 2.6. — Let V ∈ L1
loc and take p ∈ (1, 2]. Then for all 0 ⩽

a ⩽ 1/p the Riesz transform Ra
V is bounded on Lp.

Proof. — The L2 boundedness of R1/2
V is guaranteed by Proposition 2.4.

The L1 boundedness of R1
V is justified in [2, Theorem 4.3]. Hence, Theo-

rem 2.5 gives the Lp boundedness of Ra
V whenever a = θ+(1−θ)/2 = 1/p.

Finally, Corollary 2.3 extends the boundedness on Lp to 0 ⩽ a ⩽ 1/p. □

3. Definitions and a counterexample on L∞

Here the approach from the previous section is invalid since e−tL does not
necessarily extend to a strongly continuous semigroup on L∞. However, for
certain classes of potentials the operator e−tL, t > 0, can be also expressed
by the celebrated Feynman–Kac formula

(3.1) e−tLf(x) = Ex

[
e

−
∫ t

0
V (Xs)ds

f(Xt)
]
, f ∈ Lp,

where 1 ⩽ p < ∞. The expectation Ex is taken with regards to the Wiener
measure of the standard d-dimensional Brownian motion {Xs}s>0, starting
at x ∈ Rd; here Xs = (X1

s , . . . , X
d
s ). Since the potential V is a.e. non-

negative, identity (3.1) is true whenever V ∈ L2
loc belongs to the local

Kato class K loc
d . This follows for example from [24, Remark 4.14] once we

recall that for V ∈ L2
loc the operator −∆/2 + V is essentially self-adjoint
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on C∞
c , hence its Friedrichs extension is its unique self-adjoint extension.

We will not need the definition of the local Kato class in our paper; for
our purpose it is important to note that Lq

loc ⊆ K loc
d whenever q ⩾ 1

satisfies q > d/2, see [18, Lemma 4.105]. Therefore (3.1) is true for V ∈ Lq
loc

whenever q > d/2 and q ⩾ 2, in particular for V ∈ L∞
loc. The right-hand

side of (3.1) makes sense also for f ∈ L∞, see [18, Section 4.2.4], which
leads us to define for t > 0

(3.2) e−tLf(x) := Ex

[
e

−
∫ t

0
V (Xs)ds

f(Xt)
]
, f ∈ L∞.

To deal with measurability questions we need a technical lemma on the
continuity of e−tLf.

Lemma 3.1. — Assume that q > d/2 and q ⩾ 2 and let V ∈ Lq
loc be

an a.e. non-negative potential. Then for all f ∈ L∞ the function e−tLf(x)
given by (3.2) is jointly continuous in (t, x) ∈ (0,∞) × Rd. In particular
e−tL(1)(x) is jointly continuous in t and x.

Proof. — Since Lq
loc ⊆ K loc

d it follows from [24, Proposition 3.5] that e−tL

is an integral operator with its kernel Kt(x, y) being a jointly continuous
functions of (t, x, y). Since V ⩾ 0 we also have

Kt(x, y) ⩽ (2πt)−d/2 exp
(
|x− y|2/(2t)

)
and therefore for each N > 0 it holds

(3.3)
∫

|x−y|>N

Kt(x, y)|f(y)| dy ⩽ π−d/2∥f∥∞

∫
|w|⩾N/(

√
2t)
e−|w|2

dw.

Consider now (t, x) → (t0, x0) and let ε > 0 be arbitrarily small. Splitting

e−tLf(x) =
∫

|x−y|⩽N

Kt(x, y)f(y) dy +
∫

|x−y|>N

Kt(x, y)f(y) dy

and using (3.3) we see that for N = N(ε) large enough holds∣∣∣∣∣e−tLf(x) −
∫

|x−y|⩽N

Kt(x, y)f(y) dy

∣∣∣∣∣ ⩽ ε,

uniformly in t0/2 < t < 2t0 and |x− x0| < 1. Moreover, for such
(t, x) we see that C∥f∥L∞1|y|⩽N+|x0|+1 is an integrable majorant of
1|x−y|⩽NKt(x, y)f(y). Thus, using Lebesgue’s dominated convergence the-
orem we obtain

lim sup
(t,x)→(t0,x0)

∣∣e−tLf(x) − e−t0Lf(x0)
∣∣ ⩽ 2ε.

Since ε > 0 was arbitrary this completes the proof. □
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14 Maciej KUCHARSKI & Błażej WRÓBEL

Now, take a > 0 and let V ∈ L∞
loc be an a.e. non-negative potential. For

a non-negative function f ∈ L∞ we define the Riesz transform Ra
V by

(3.4) Ra
V f(x)

= V a(x) · 1
Γ(a)

∫ ∞

0
Ex

[
e

−
∫ t

0
V (Xs)ds

f(Xt)
]
ta−1 dt, f ∈ L∞.

Note that by Lemma 3.1 the function Ra
V f(x) is then a measurable function

on Rd possibly being infinite for some x. Moreover, by (3.1) the L∞ defi-
nition (3.4) coincides with the Lp definition (2.4) whenever f is a finitely
simple function.

Since the semigroup is positivity preserving we have

(3.5) |e−tLf(x)| ⩽ e−tL(∥f∥∞1)(x) = ∥f∥∞e
−tL(1)(x), f ∈ L∞,

which leads to the following definition of the L∞ boundedness of Ra
V .

Definition 3.2. — We say that the Riesz transform Ra
V is bounded on

L∞ if

(3.6) ∥Ra
V (1)∥∞ < ∞.

Note that if (3.6) holds, then for every f ∈ L∞ by (3.5) we have
|Ra

V (f)(x)| ⩽ ∥f∥∞R
a
V (1)(x) so that

∥Ra
V (f)∥∞ ⩽ C∥f∥∞, f ∈ L∞

with C = ∥Ra
V (1)∥∞.

Since

(3.7) Ra
V (1)(x) = V a(x) · 1

Γ(a)

∫ ∞

0
e−tL(1)(x) ta−1 dt

it is apparent that in order for Ra
V to be finite a.e. on suppV the monotone

function t 7→ e−tL(1)(x) must converge to 0 as t → ∞. This however is not
always the case.

Proposition 3.3. — Let d ⩾ 3 and let V be a non-negative potential
on Rd which is compactly supported and not identically equal to zero.
Assume that V ∈ Lq(Rd) with q > d/2 and q ⩾ 2. Then, for any a > 0
we have Ra

V (1)(x) = ∞ for x such that V (x) ̸= 0. In particular Ra
V is

unbounded on L∞.

Proof. — Fix a > 0. For x ∈ Rd we let w(x) = lims→∞ e−sL(1)(x).
From [13, Lemma 2.4] there exist a constant δ > 0 such that δ < w(x) ⩽ 1
uniformly in x ∈ Rd. Since by the semigroup property w(x) = e−tL(w)(x)
for any t > 0, we see that e−tL(1) ⩾ e−tL(w)(x) ⩾ δ uniformly in x ∈ Rd.
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Consequently, the integral
∫∞

0 e−tL(1)(x) ta−1 dt is infinite for a.e. x and
so is Ra

V (1)(x) as long as V (x) ̸= 0. □

The definition below is meant to guarantee the x-a.e. finiteness ofRa
V f(x).

Definition 3.4. — Let V ∈ L∞
loc be an a.e. non-negative potential and

let δ > 0. We say that the semigroup e−tL has an exponential decay of
order δ (ED(δ) for short) if there exists a constant C > 0 such that

(ED(δ)) ∥e−tL(1)∥∞ ⩽ Ce−δt, t > 0.

The assumption (ED(δ)) implies |Ra
V f(x)| ⩽ Cδ−aV a(x)∥f∥∞ x-a.e..

Note, however, that this may not be enough to conclude that ∥Ra
V (1)∥∞<∞.

4. L∞ boundedness for classes of potentials

Throughout this section we assume that V ∈ L∞
loc. Here our goal is to

estimate the L∞ norm of Ra
V for classes of potentials V . As mentioned in

Definition 3.2 this is the same as estimating ∥Ra
V (1)∥∞ with Ra

V (1) defined
by (3.7).

Before we dive into details, we prove a general result concerning the
L∞ decay of the semigroup e−tL defined in (3.2). We will use Lemma 4.1
below to prove the L∞ and L1 boundedness of Ra

V for concrete examples of
potentials V in Theorems C and D. Here π denotes a (d − 1)-dimensional
hyperplane in Rd. For N > 0 we let P be the strip

P = PN :=
{
x ∈ Rd : dist(x, π) ⩽ N

}
and set χ = 1P .

Lemma 4.1. — Let N > 0 and assume that the potential V ∈ L∞
loc is

uniformly positive outside the strip PN . More precisely we assume that
V is non-negative a.e. and that there is c > 0 such that V (x) ⩾ c for
a.e. x satisfying dist(x, π) > N . Then the semigroup e−tL has ED(δ) with
δ = 1

2 min
(
c, 1

8N2

)
. More precisely, there is a universal constant C > 0 such

that for t > 0 and x ∈ Rd it holds

e−tL(1)(x) ⩽ C e−δt.

To prove the above lemma we will need an auxiliary fact. Lemma 4.2
below can be deduced from [18, Lemma 4.105]. For the sake of completeness
we give a more direct proof below.

TOME 0 (0), FASCICULE 0
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Lemma 4.2. — For all k > 0, t > 0, and x ∈ Rd we have

(4.1) Ex

[
e

2
∫ t

0
kχ(Xs)ds

]
⩽ C e8N2k2t,

where C > 0 is a universal constant.

Proof. — We prove this fact in the case π = {0} × Rd−1 and P =
[−N,N ]×Rd−1. The general result follows from the invariance of Brownian
motion under orthogonal transformations (see [20, p. 5]) and the fact that
the bound is independent of x. Since in this case χ(Xs) = 1[−N,N ](X1

s ) it
suffices to prove the lemma in the dimension d = 1. In particular in the
proof we take x ∈ R.

The main tool of our proof is the local time of Brownian motion defined
for y ∈ R in the one-dimensional case as

Lt(y) = lim
ε→0+

1
2ε

∫ t

0
1[y−ε, y+ε](Ys) ds,

where {Ys}s>0 is the standard one-dimensional Brownian motion starting
at 0. It is well known that∫ t

0
f(Ys) ds =

∫
R
f(y)Lt(y) dy

for any locally integrable function f , see [5, (5.4)]. In particular, we have

(4.2)
∫ t

0
1[−N−x, N−x](Ys) ds =

∫ N−x

−N−x

Lt(y) dy.

The law of Lt(y) was computed by Takács [25]. From a paper of Doney and
Yor [10], see the last identity in Section 3 on p. 277 (with µ = 0 and x = y)
and [10, eq. (1.4)], it follows that the distribution of Lt(y) is given by

cy,tδ0 + fy,t(z) dz

on [0,+∞), where δ0 denotes the Dirac measure at 0,

(4.3) fy,t(z) =
√

2√
πt
e− (|y|+z)2

2t , y ∈ R, z > 0,

and cy,t < 1 is a normalizing constant which value is irrelevant for us.

ANNALES DE L’INSTITUT FOURIER



RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS 17

Using (4.2) and Jensen’s inequality for x ∈ R we obtain

Ex

[
e

2
∫ t

0
kχ(Xs)ds

]
= E0

[
e

2
∫ N−x

−N−x
kLt(y)dy

]
⩽

1
2N E0

[∫ N−x

−N−x

e4NkLt(y) dy
]

⩽
1

2N

∫ N−x

−N−x

(
1 +

∫ ∞

0
e4Nkzfy,t(z) dz

)
dy

= 1 + 1
2N

∫ ∞

0
e4Nkz

∫ N−x

−N−x

fy,t(z) dy dz

The 1+ term in the second line comes from the atom of the distribution
of Lt(y) at z = 0. Since the function y 7→ fy,t(z) is radially decreasing, we
can change the limits of the inner integral to [−N,N ], possibly increasing
its value. Thus, using (4.3) gives

(4.4)

1 + 1
2N

∫ ∞

0
e4Nkz

∫ N−x

−N−x

fy,t(z) dy dz

⩽ 1 + 1
2N

∫ ∞

0
e4Nkz

∫ N

−N

fy,t(z) dy dz

= 1 +
√

2
N

√
πt

∫ ∞

0
e4Nkz

∫ N

0
e− (y+z)2

2t dy dz.

First we deal with the inner integral. Calculating it yields∫ N

0
e− (y+z)2

2t dy =
√
πt

2

(
erf
(
z +N√

2t

)
− erf

(
z√
2t

))
.

To estimate the expression above, note that erf ′(y) = 2e−y2
√

π
, hence, by the

mean value theorem

erf
(
z +N√

2t

)
− erf

(
z√
2t

)
= N√

2t
erf ′(θ),

for some θ > z/(
√

2t) and thus∫ N

0
e− (y+z)2

2t dy ≲ Ne− z2
2t .

Plugging the above estimate into (4.4), we obtain

Ex

[
e

2
∫ t

0
kχ(Xs)ds

]
≲ 1 +

√
2
πt

∫ ∞

0
e4Nkz− z2

2t dz

≲ e8N2k2t,

which completes the proof of Lemma 4.2. □
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Now we prove Lemma 4.1. In the proof the quadratic dependence on k

on the right-hand side of (4.1) will be crucial.
Proof of Lemma 4.1. — We want to make use of the assumption that the

potential V is uniformly positive outside the set P together with the previ-
ous lemma. We achieve this by an appropriate application of the Cauchy–
Schwarz inequality.

Recall that χ = 1P and take k ∈ (0, c]. Since the potential 2(V + kχ) is
bounded below by 2k using Cauchy–Schwarz inequality we estimate

e−tL(1)(x) = Ex

[
e

−
∫ t

0
V (Xs)ds

]
= Ex

[
e

−
∫ t

0
V (Xs)+kχ(Xs)ds

e

∫ t

0
kχ(Xs)ds

]
⩽

[
Exe

−2
∫ t

0
V (Xs)+kχ(Xs)ds

]1/2[
Exe

2
∫ t

0
kχ(Xs)ds

]1/2

⩽ e−ktEx

[
e

2
∫ t

0
kχ(Xs)ds

]1/2
.

Applying Lemma 4.2 for each k satisfying 4N2k2 ⩽ k
2 we get

e−tL(1)(x) ≲ e−kt+4N2k2t ⩽ e− kt
2 , x ∈ Rd.

In particular, the above estimate holds for k = min(c, (8N2)−1) and the
proof is completed. □

Now focus on our goal, which is estimating the quantity

(4.5) Γ(a)Ra
V (1)(x) = V a(x)

∫ ∞

0
e−tL(1)(x) ta−1 dt

independently of x ∈ Rd. We will do this by splitting the integral in (4.5)
into two parts and estimating them separately.

Before stating the result we need to introduce a quantity ρ which plays
a crucial role in our assumptions. For u ⩾ 1 and x ∈ Rd we define

(4.6) ρ = ρx(u) = sup
{
r ⩾ 0 : V (x)

u ⩽ V (y) for a.e. y ∈ B(x, r)
}

;

recall that B(x, r) denotes the closed Euclidean ball of radius r in Rd.
Consequently, ρx(u) is the radius of the largest closed ball around x in
which the potential V is at least V (x)/u a.e. We note that ρx(u) is a non-
decreasing function of u with values in [0,∞]. We also set

(4.7) rk = rk(x) = ρx(2k) for k = 0, 1, . . . .
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Our main assumption will be phrased in terms of

(4.8) Ia(V )(x) :=
∫ max(1,V (x))

1
sa−1e− ρ2

x(s)
4d ds for a.e. x ∈ Rd.

If ρx(s) = ∞, then we define e− ρ2
x(s)
4d = 0.

First we estimate the integral in (4.5) from 0 to 1. Recall that implicit
constants in ≲ and ≈ do not depend on x ∈ Rd but may depend on a > 0.

Lemma 4.3. — Let V be an a.e. non-negative potential and let a > 0.
Then we have

V (x)a

∫ 1

0
e−tL(1)(x) ta−1dt ≲ Ia(V )(x) + 1 for a.e. x ∈ Rd.

Proof. — First if V (x) ⩽ 2, then

V (x)a

∫ 1

0
e−tL(1)(x) ta−1dt ≲ 1.

From now on we focus on the other case V (x) > 2. Define K = K(x) =
⌊log2 V (x)⌋. For fixed x ∈ Rd and k = 0, 1, 2, . . . we introduce the sets

(4.9) Ak =
{
y ∈ Rd : V (x)

2k
⩽ V (y)

}
and

Ωk = {ω ∈ Ω : Xs(ω) ∈ Ak for almost all s ∈ [0, t]},
where (Ω,F ,P) is the underlying probability space for the d-dimensional
Brownian motion {Xs}s>0 started at 0.

Note that both the families {Ak} and {Ωk} are increasing in k. Using
the Feynman–Kac formula (3.2) we write

e−tL(1)(x) = Ex

[
e

−
∫ t

0
V (Xs)ds

1Ω0

]
+

K∑
k=1

Ex

[
e

−
∫ t

0
V (Xs)ds

1Ωk∩Ωc
k−1

]
+ Ex

[
e

−
∫ t

0
V (Xs)ds

1Ωc
K

]
⩽ e−tV (x) +

K∑
k=1

e− tV (x)
2k P

(
Ωk ∩ Ωc

k−1
)

+ P(Ωc
K).(4.10)

We need to estimate the probabilities in the above formula. This will be
achieved with the aid of

(4.11) P(Ωc
k) ⩽ P

(
sup

0⩽s⩽t
|Xs − x| ⩾ rk

)
.
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Before moving further we focus on justifying (4.11). To prove this in-
equality we will show that{

ω ∈ Ω : sup
0⩽s⩽t

|Xs(ω) − x| < rk

}
⊆ Ωk

up to a set of P measure 0. More precisely, we will demonstrate that for P
almost all ω ∈ Ω we have the implication

(4.12) if sup
0⩽s⩽t

|Xs(ω) − x| < rk then Xs(ω) ∈ Ak for a.e. s ∈ [0, t].

To this end take ω ∈ Ω such that sup0⩽s⩽t |Xs(ω) − x| < rk. Using the
definitions (4.6) and (4.7) of ρ and rk we see that there is a set N ⊆ Rd of
measure 0 such that

if Xs(ω) /∈ N then V (x)
2k

⩽ V (Xs(ω)),

By the definition (4.9) of Ak this statement is the same as the implication

if Xs(ω) /∈ N then Xs(ω) ∈ Ak.

Define fω(s) := Xs(ω), s ∈ [0, t], and let Ñ(ω) = f−1
ω [N ] ⊆ [0, t]. Then s /∈

Ñ(ω) if and only if Xs(ω) /∈ N . We shall now demonstrate that
∣∣Ñ(ω)

∣∣ = 0
for P almost all ω ∈ Ω. Observe that∣∣Ñ(ω)

∣∣ = |{s ∈ [0, t] : Xs(ω) ∈ N}| =
∫ t

0
1{Xs(ω)∈N}(s, ω) ds.

Calculating the expected value of the above expression and using Fubini’s
theorem give

E
[∣∣Ñ ∣∣] = E

[∫ t

0
1{Xs(ω)∈N}(s, ω) ds

]
=
∫ t

0
E
[
1{Xs(ω)∈N}(s, ω)

]
ds

=
∫ t

0
P(Xs(ω) ∈ N) ds = 0.

The last equality follows from the fact that |N | = 0 and that each of the
variables Xs has a continuous distribution. Since

∣∣Ñ(ω)
∣∣ is non-negative,

it has to be 0 for P almost all ω ∈ Ω.
Hence we have proved that for P almost all ω ∈ Ω there is a set Ñ(ω) ⊆

[0, t] of Lebesgue measure 0 and such that

if s /∈ Ñ(ω) then Xs(ω) ∈ Ak.

This proves (4.12) and in consequence (4.11).
Now we come back to calculating the probabilities in (4.10). The right-

hand side of inequality (4.11) is the probability that Xs exits the ball of
radius rk centered at x. We can estimate it from above by the probability
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that Xs exits an inscribed cube whose sides are parallel to the coordinate
axes. The length of its diagonal equals a

√
d = 2rk, where a is the cube’s

side length, so we get

(4.13) P
(

sup
0⩽s⩽t

|Xs − x| ⩾ rk

)
⩽ P

(
sup

0⩽s⩽t
max

i

∣∣Xi
s − xi

∣∣ ⩾ a

2

)
= P

(
max

i
sup

0⩽s⩽t

∣∣Xi
s − xi

∣∣ ⩾ a

2

)
⩽ d · P

(
sup

0⩽s⩽t

∣∣X1
s − x1

∣∣ ⩾ a

2

)
⩽ d · P

(
sup

0⩽s⩽t
(X1

s − x1) ⩾ a

2

)
+ d · P

(
inf

0⩽s⩽t
(X1

s − x1) ⩽ −a

2

)
= 2d · P

(
sup

0⩽s⩽t
(X1

s − x1) ⩾ a

2

)
= 4d · P

(
(X1

t − x1) ⩾ a

2

)
⩽ 4d erfc

(
rk√
2td

)
⩽ 4de−

r2
k

2td .

The last equality in (4.13) follows from the reflection principle for Brownian
motion, while the last inequality is a well-known bound for the complemen-
tary error function erfc, see e.g. [19, eq. (7.8.3)].

Consequently,

(4.14) P(Ωc
k) ⩽ 4de−

r2
k

2td

and coming back to (4.10) for 0 < t < 1 we get

e−tL(1)(x) ≲ e−tV (x) +
K∑

k=1
e− tV (x)

2k e−
r2

k−1
2td + e−

r2
K

2td

⩽ e−tV (x) +
K∑

k=1
e− tV (x)

2k e−
r2

k−1
2d + e−

r2
K

2d

(4.15)

Integrating and multiplying this inequality by V (x)a gives

(4.16) V (x)a

∫ 1

0
e−tL(1)(x) ta−1dt ≲ 1 +

K∑
k=1

2kae−
r2

k−1
2d + V (x)ae−

r2
K

2d .
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Then, for k ⩾ 2 we estimate each of the terms in the sum by an integral re-
calling that rk(x) = ρx(2k) and using the fact that ρx(u) is a non-decreasing
function of u

(4.17) 2kae−
r2

k−1
2d ⩽

∫ k−1

k−2
2(u+2)ae− ρ2

x(2u)
2d du.

The last term in (4.16) is estimated in a similar manner using additionally
the fact that V (x)a ⩽

∫K

K−1 2(u+2)a du. This yields

(4.18) V (x)ae−
r2

K
2d ⩽

∫ K

K−1
2(u+2)ae− ρ2

x(2u)
2d du.

We estimate the first term of the sum in (4.16) by a constant and plug this,
(4.17) and (4.18) into (4.16), which results in

(4.19)
1 +

K∑
k=1

2kae−
r2

k−1
2d + V (x)ae−

r2
K

2d ≲ 1 +
∫ K

0
2uae− ρ2

x(2u)
2d du

⩽ 1 +
∫ log2 V (x)

0
2uae− ρ2

x(2u)
2d du.

Finally we substitute s = 2u to get

(4.20)
1 +

∫ log2 V (x)

0
2uae− ρ2

x(2u)
2d du ≈ 1 +

∫ V (x)

1
sa−1e− ρ2

x(s)
2d ds

⩽ 1 + Ia(V )(x). □

In the next lemma we estimate the second part of the integral from (4.5).

Lemma 4.4. — Let V be an a.e. non-negative potential and suppose
that, for some δ > 0, the semigroup e−tL satisfies (ED(δ)). Take a > 0.
Then we have

(4.21) V (x)a

∫ ∞

1
e−tL(1)(x) ta−1dt ≲ Ia(V )(x) + 1, x ∈ Rd.

Proof. — Using the semigroup property and the positivity-preserving
property of {e−tL}t>0 for t ⩾ 1 we obtain

e−tL(1)(x) = e−(t/2)L[e−(t/2)L(1)](x) ⩽
∥∥∥e−(t/2)L(1)

∥∥∥
∞
e−(t/2)L(1)(x)

⩽ Ce−δt/2e−(1/2)L(1)(x),

where the last two inequalities follow from (ED(δ)) and (3.1). Plugging this
into (4.21) we get

(4.22) V (x)a

∫ ∞

1
e−tL(1)(x) ta−1dt ≲ V (x)ae−L/2(1)(x).
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Now we are left with proving that V a(x)e−L/2(1)(x) ≲ Ia(V )(x) + 1.
If V (x) ⩽ 2, then this is true. Assume that V (x) > 2 and let K(x) =
⌊log2 V (x)⌋. Recall that by (4.15) we have

e−L/2(1)(x) ≲ e− V (x)
2 +

K∑
k=1

e− V (x)
2k+1 e−

r2
k−1
2d + e−

r2
K

2d .

Since V (x)ae− V (x)
2k+1 ⩽

(
2k+1a

e

)a

, repeating calculations as in (4.16)–(4.20)
we get

(4.23)
V (x)ae−L/2(1)(x) ≲ 1 +

K∑
k=1

2kae−
r2

k−1
2d + V (x)ae−

r2
K

2d

≲ 1 + Ia(V )(x).

In view of (4.22) this completes the proof of the lemma. □

Together, Lemma 4.3 and Lemma 4.4 lead to the following conclusion.

Theorem 4.5. — Let V ∈ L∞
loc be an a.e. non-negative potential.

Suppose that the semigroup e−tL has exponential decay of order δ > 0
(see (ED(δ))). If

(4.24) Ia(V ) ≲g 1

for some a > 0, then the operator Ra
V is bounded on L∞.

Proof. — We need to estimate the quantity

(4.25) V a(x)
∫ ∞

0
e−tL(1)(x) ta−1 dt

independently of x. Take N > 0 such that Ia(V )(x) ≲ 1 for almost all
|x| > N . Then by Lemma 4.3 and Lemma 4.4 the expression (4.25) is
uniformly bounded for a.e. |x| > N . If on the other hand |x| ⩽ N , then,
since V ∈ L∞

loc and the semigroup satisfies (ED(δ)), the expression (4.25)
is uniformly bounded x-a.e. □

As an application of this theorem, we prove that Ra
V is bounded on

L∞(Rd) if V is of the order of a power function or an exponential func-
tion. The corollary below is a restatement of one of our main results —
Theorem C.

Corollary 4.6. — Let V : Rd → [0,∞) be a function in L∞
loc. Then in

all the three cases
(1) V (x) ≈ 1 globally
(2) For some α > 0 we have V (x) ≈ |x|α globally
(3) For some β > 1 we have V (x) ≈ β|x| globally
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each of the Riesz transforms Ra
V , a > 0, is bounded on L∞(Rd).

Remark. — More generally, the theorem also holds if in (2) and (3) we
take an arbitrary norm on Rd instead of the Euclidean norm | · |. The proof
is the same mutatis mutandis.

Proof. — In the proof implicit constants in ≲, ≳, and ≈ do not depend
on x ∈ Rd but may depend on a > 0, α > 0 or β > 1.

Clearly in all three cases the assumptions of Lemma 4.1 are satisfied,
so the semigroup satisfies (ED(δ)) and we only need to check that (4.24)
holds.

In the first case V (x) is bounded for almost all sufficiently large values
of |x| and so is Ia(V )(x) for all a > 0.

In the second case we need to estimate from below ρx(s) appearing in
Ia(V ). We shall prove that ρx(s) ⩾ |x|/2 provided s and |x| are large
enough. Let N be such that for some 0 < m < M it holds

(4.26) m|x|α < V (x) < M |x|α for a.e. |x| ⩾ N.

Take |x| ⩾ 2N and assume that |x−y| ⩽ |x|/2. Then 2|x| ⩾ |y| ⩾ |x|/2 ⩾ N

so that (4.26) holds with y in place of x. Consequently, V (x) ≈ V (y) for
such x and y so that for s larger than some threshold depending only on
N , m and M it holds V (y) ⩾ V (x)/s. This means that for a.e. |x| ⩾ 2N
and uniformly large enough s ⩾ 1 we have ρx(s) ⩾ |x|/2. Thus, for any
a > 0 we obtain

(4.27) Ia(V )(x) ≲g 1 + |x|aαe− |x|2
16d ≲g 1.

as desired.
Finally we handle the third case. We shall prove that ρx(s) ⩾

1
2 min

(
|x|, logβ s

)
provided s and |x| are large enough. Let N > 0 be such

that for some 0 < m ⩽ 1 ⩽M we have

(4.28) mβ|x| < V (x) < Mβ|x| for a.e. |x| ⩾ N.

Take |x| ⩾ 2N, s > 4, and assume that |x − y| ⩽ 1
2 min

(
|x|, logβ s

)
.

Then, similarly to the previous paragraph, |x| ≈ |y| ⩾ N and (4.28)
also holds with y in place of x. Therefore, for such x and y we have
β|y|−|x| ≈ V (y)/V (x). In particular |y| − |x| − γ ⩽ logβ V (y) − logβ V (x),
for some γ > 0 independent of x and y. Hence, we reach

(4.29) −1
2 min

(
|x|, logβ s

)
− γ ⩽ logβ V (y) − logβ V (x).

Taking s large enough we see that − 1
2 logβ s−γ ⩾ − logβ s and coming back

to (4.29) we obtain V (x)/s ⩽ V (y). In conclusion, we proved that ρx(s) ⩾
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1
2 min

(
|x|, logβ s

)
for a.e. |x| ⩾ 2N when s is large enough (independently

of x). Now, using (4.28) we obtain the uniform in |x| ⩾ 2N bound

(4.30)
Ia(V )(x) ≲g 1 +

∫ β|x|

1
sa−1e−

(logβ s)2

16d ds+
∫ Mβ|x|

β|x|
sa−1e− |x|2

16d ds

≲g 1,

This completes the treatment of the third case and also the proof of Corol-
lary 4.6. □

5. L1 boundedness for classes of potentials

In this section we estimate the L1 norm of the operator Ra
V for a > 0

and various non-negative potentials V ∈ L∞
loc. Recall that the assumption

V ∈ L∞
loc guarantees the validity of the Feynman–Kac formula (3.1).

The idea is to estimate the L∞ norm of the adjoint operator which
formally is

(L−aV a)f = 1
Γ(a)

∫ ∞

0
e−tL(V af) ta−1 dt.

Using the positivity-preserving property of e−tL the task naturally reduces
to estimating the L∞ norm of the function

(5.1) Γ(a)L−a(V a)(x) :=
∫ ∞

0
e−tL(V a)(x) ta−1 dt.

Since V may be unbounded, the expression e−tL(V a)(x) may be infinite
for some x in which case the x-measurability of the integral (5.1) is not
clear. To remedy the situation we formally define

(5.2) Γ(a)L−a(V a)(x) := lim
N→∞

∫ ∞

0
e−tL(V a

1|V |<N )(x) ta−1e−t/N dt.

Note that each of the integrals in (5.2) is finite and measurable by
Lemma 3.1, hence the limit gives a measurable function by the monotone
convergence theorem. A short duality argument shows that if L−a(V a) ∈
L∞, then indeed Ra

V is bounded on L1 with ∥Ra
V ∥1 ⩽ ∥L−a(V a)∥∞.

Throughout this section we estimate the L∞ norm of L−a(V a) in the
form (5.1). This is allowed since by the assumptions which we will impose
on V both e−tL(V a)(x) and the integral (5.1) will turn out to be finite
x-a.e.. This permits us to take N = ∞ in (5.2).

In what follows for x ∈ Rd and u ⩾ 1 we let

σ = σx(u) = sup{r ⩾ 0 : V (y) ⩽ uV (x) for a.e. y ∈ B(x, r)}.
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Consequently, σx(u) is the radius of the largest closed ball around x in
which the potential V is at most uV (x) a.e. We remark that σx(u) is
a non-decreasing function of u with values in [0,∞]. Using the quantity
σx(u) we define

(5.3) Ja(V )(x) := min(1, V (x)a)
∫ ∞

1
sa−1e−σ2

x(s)/8 ds, for a.e. x ∈ Rd.

If V ∈ L∞ and uV (x) ⩾ ∥V ∥∞, then V (y) ⩽ uV (x) for a.e. y ∈ B(x, r)
with arbitrarily large r > 0. In this case σx(u) = ∞ and by convention
e−σ2

x(u)/8 = 0. This is the case for instance if V ∈ L∞ is of constant order
for large x.

We begin with estimating the integral (5.1) from 0 to 1. Recall that
implicit constants in ≲ and ≈ are allowed to depend on d and a > 0.

Proposition 5.1. — Let V ∈ L∞
loc be an a.e. non-negative potential

and take a > 0. Then the inequality

(5.4)
∫ 1

0
e−tL(V a)(x) ta−1dt ≲ (Ja(V )(x) + 1)(Ia(V )(x) + 1)

holds for a.e. x ∈ Rd that satisfies V (x) ̸= 0. Moreover, if V is an
a.e. non-negative potential which satisfies the growth estimate V (x) ≲
exp
(
|x|2/(4a)

)
for a.e. x ∈ Rd, then

(5.5)
∫ 1

0
e−tL(V a)(x) ta−1dt ≲ exp

(
|x|2
)
, x ∈ Rd.

Proof.

Proof of (5.4). — Here we consider x ∈ Rd such that V (x) ̸= 0.
Recall that

Ak =
{
y ∈ Rd : V (x)

2k
⩽ V (y)

}
and

Ωk = {ω ∈ Ω : Xs(ω) ∈ Ak for almost all s ∈ [0, t]}.

Here we shall also need

Bj =
{
y ∈ Rd : 2jV (x) < V (y) ⩽ 2j+1V (x)

}
and

Ψj = Ψt
j := {ω ∈ Ω : Xt(ω) ∈ Bj}.
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Note that if V (x) ̸= 0 then the sets {Bj}j∈Z are pairwise disjoint and

e−tL(V a)(x) = e−tL

∑
j⩽0

1Bj
V a

(x) + e−tL

∑
j>0

1Bj
V a

(x)

≲ V (x)ae−tL(1)(x) +
∑
j>0

V (x)a2jae−tL(1Bj
)(x).

(5.6)

We shall prove that the estimates

(5.7)
∫ 1

0
e−tL(V a)(x)ta−1dt ≲ (Ia(V )(x)+1)

(∫ ∞

1
sa−1e−σ2

x(s)/8 ds+1
)

and

(5.8)
∫ 1

0
e−tL(V a)(x)ta−1dt

≲ Ia(V )(x) + 1 + V (x)a

(∫ ∞

1
sa−1e−σ2

x(s)/8 ds
)

hold for x such that V (x) ̸= 0. The inequalities (5.7) and (5.8) imply (5.4).
We prove (5.7) first. Let K = max(1, ⌊log2 V (x)⌋) and for k = 1, . . . ,K

and j ∈ Z denote
rk = ρx(2k), sj = σx(2j).

Estimating the second term in (5.6) we use the Feynman–Kac formula (3.1)
with f = V a

1Bj
to write∑

j>0
e−tL(V a

1Bj
)(x) ≲ V a(x)

∑
j>0

2jae−tL(1Bj
)(x).

Using again (3.1), proceeding as in the proof of Lemma 4.3 and apply-
ing (4.14) we obtain

e−tL(1Bj )(x)

⩽ e−tV (x)P(Ψj) +
K∑

k=1
e− tV (x)

2k P
(
Ωc

k−1 ∩ Ψj

)
+ P(Ωc

K ∩ Ψj)

⩽ P(Ψj)1/2

(
e−tV (x) +

K∑
k=1

e− tV (x)
2k
[
P
(
Ωc

k−1
)]1/2 + [P(Ωc

K)]1/2

)

≲ P(Ψj)1/2

(
e−tV (x) +

K∑
k=1

e− tV (x)
2k e−

r2
k−1
4td + e−

r2
K

4td

)
Further, we have Ψj ⊆ {ω ∈ Ω: Xt(ω) ̸∈ B(x, sj)} up to a set of P measure
0. Indeed, a.e. y ∈ B(x, sj) satisfies V (y) ⩽ 2jV (x), hence it lies outside
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Bj . Here we also use the fact that Xt has a continuous distribution. Thus
we reach

(5.9)

P(Ψj) ⩽ P(|Xt − x| ⩾ sj) = 1
(2πt)d/2

∫
|y|⩾sj

e− |y|2
2t dy

⩽
e−s2

j /(4t)

(2πt)d/2

∫
|y|⩾sj

e− |y|2
4t dy ≲ e−s2

j /(4t)

so that

e−tL(1Bj
)(x) ≲ e−s2

j /(8t)

(
e−tV (x) +

K∑
k=1

e− tV (x)
2k e−

r2
k−1
4td + e−

r2
K

4td

)
.

Putting the above bound in (5.6) and replacing the sum over j with an
integral as in (4.18) and (4.19) we reach∑

j>0
V (x)a2jae−tL(1Bj )(x)

≲ V (x)a

(
e−tV (x) +

K∑
k=1

e− tV (x)
2k e−

r2
k−1
4td + e−

r2
K

4td

)∑
j>0

2jae−s2
j /(8t)

≲ V (x)a

(
e−tV (x) +

K∑
k=1

e− tV (x)
2k e−

r2
k−1
4td + e−

r2
K

4td

)∫ ∞

1
sa−1e−σ2

x(s)/(8t) ds.

The first term on the right-hand side of (5.6) was already estimated in the
proof of Lemma 4.3 by

V (x)ae−tL(1)(x) ⩽ V (x)a

(
e−tV (x) +

K∑
k=1

e− tV (x)
2k e−

r2
k−1
2td + e−

r2
K

2td

)
,

see (4.15). Hence, coming back to (5.6) we reach

e−tL(V a)(x) ≲ V (x)a

(∫ ∞

1
sa−1e−σ2

x(s)/8 ds+ 1
)

×

(
e−tV (x) +

K∑
k=1

e− tV (x)
2k e−

r2
k−1
4td + e−

r2
K

4td

)

We use the above inequality to estimate
∫ 1

0 e
−tL(V a)(x) ta−1 dt. From this

point on the proof is a repetition of the argument in (4.16)–(4.20) that
leads to (5.7).
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Now we pass to the proof of (5.8). This time we merely estimate
e−tL(1Bj

)(x) by P(Ψj). In view of (5.6) and (5.9) proceeding as in the
proof of (5.7) we thus obtain

e−tL(V a)(x) ≲ V (x)a

(
e−tV (x) +

K∑
k=1

e− tV (x)
2k e−

r2
k−1
2td + e−

r2
K

2td

)
+ V (x)a

∑
j>0

2jae−s2
j /(4t)

≲ V (x)a

(
e−tV (x) +

K∑
k=1

e− tV (x)
2k e−

r2
k−1
2td + e−

r2
K

2td

)

+ V (x)a

∫ ∞

1
sa−1e−σ2

x(s)/8 ds.

Once again we integrate the above expression by repeating the argument
in (4.16)–(4.20) and obtain (5.8).

Proof of (5.5). — The growth assumption on V implies that

Ex[V (Xt)a] ≲ (2πt)−d/2
∫
Rd

e−|y−x|2/(2t)e|y|2/4 dy.

Then, a short calculation leads to

Ex[V (Xt)a] ≲ exp
(
|x|2
)
, t < 1.

Thus, using the Feynman–Kac formula (3.1) we estimate

e−tL(V a)(x) ⩽ Ex[V (Xt)a] ≲ exp
(
|x|2
)
,

so that ∫ 1

0
e−tL(V a)(x) ta−1dt ≲ exp

(
|x|2
)
.

This completes the proof of Proposition 5.1. □

Now we pass to the integral (5.1) restricted to the range [1,∞). We
shall prove several results with varying assumptions on the potential V.
For this reason the treatment here is significantly more complicated than
in Section 4.

We start with a counterpart of Proposition 5.1. To this end we need yet
another quantity

Ka
c (V )(x) := min(1, V (x)a)

∫ ∞

1
e−cσx(s)sa−1 ds, for a.e. x ∈ Rd,

where a, c > 0. Note that this is essentially larger than Ja(V )(x) defined
by (5.3) and used in Proposition 5.1. Indeed, observe that for each c > 0
there is a constant M independent of x and s such that σ2

x(s)
8 ⩾ cσx(s)−M
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for all s ⩾ 1 and x ∈ Rd, which means that e−σ2
x(s)/8 ⩽ eMe−cσx(s) and in

turn

(5.10) Ja(V )(x) ≲ Ka
c (V )(x).

Proposition 5.2. — Let V be an a.e. non-negative potential. Assume
that the semigroup e−tL satisfies (ED(δ)) with some δ > 0. Let a > 0, take
b > a and define

(5.11) c = min
(
b− a

8b ,
δa

4b

)
.

Then

(5.12)
∫ ∞

1
e−tL(V a)(x) ta−1dt ≲ (Ka

c (V )(x) + 1)(Ib(V )(x) + 1)

uniformly in every x such that V (x) ̸= 0.
Moreover, if V is of exponential growth η, i.e.

(5.13) V (x) ≲ eη|x|,

with η <
√
δ/(

√
2da), then

(5.14)
∫ ∞

1
e−tL(V a)(x) ta−1dt ≲ exp

(√
daη|x|

)
, x ∈ Rd.

Remark. — The implicit constants in (5.12), (5.14) possibly depend on
a, b, δ, η.

Proof.
Proof of (5.12). — Using the splitting into the sets Bj as in (5.6) and

the Feynman–Kac formula (3.1) we obtain

e−tL(V a)(x) ≲ V (x)ae−tL(1)(x) +
∑
j>0

V (x)a2jae−tL(1Bj )(x)

≲ V (x)ae−tL(1)(x) +
∑
j>0

V (x)a2jaEx

[
e

−
∫ t

0
V (Xs)ds

1Ψj

]
By Lemma 4.4 we have∫ ∞

1
V (x)ae−tL(1)(x) ta−1 dt ≲ Ia(V )(x) + 1 ≲ Ib(V )(x) + 1.

Hence, we only focus on the integral over the second term, namely∫∞
1 Sx(t) ta−1 dt with

Sx(t) :=
∑
j>0

V (x)a2jaEx

[
e

−
∫ t

0
V (Xs)ds

1Ψj

]
.
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Let p = b/a and let q be its conjugate exponent. Then Hölder’s inequality
gives

Sx(t) ⩽
∑
j>0

V (x)a2ja

(
Ex

[
e

−p
∫ t

0
V (Xs)ds

])1/p(
Ex[1Ψj ]

)1/q

≲
∑
j>0

V (x)a2ja
(
e−tL(1)(x)

)1/pP(Ψj)1/q.

(5.15)

Using (5.15) we shall prove that

(5.16)
∫ ∞

1
Sx(t) ta−1 dt ≲ (Ib(V )(x) + 1)

(∫ ∞

1
e−cσx(s)sa−1 ds+ 1

)
.

and

(5.17)
∫ ∞

1
Sx(t) ta−1 dt ≲ V (x)a

(∫ ∞

1
e−cσx(s)sa−1 ds

)
.

These two inequalities imply that∫ ∞

1
Sx(t) ta−1 dt ≲ (Ka

c (V )(x) + 1)(Ib(V )(x) + 1),

and thus are enough to complete the proof of (5.12).
We start with (5.16). Using monotonicity, the semigroup property, and

(ED(δ)) we obtain that

e−tL(1)(x) = e−tL/2(e−tL/2(1))(x) ≲ e−δt/2e−L/2(1)(x).

Hence, (5.15) gives

Sx(t) ⩽ e−δt/(2p)
(
V (x)ape−L/2(1)(x)

)1/p

·
∑
j>0

2jaP(Ψj)1/q.

Since ap = b a repetition of the computation in (4.23) shows that

(5.18) Sx(t) ≲ (Ib(V )(x) + 1) · e−δt/(2p) ·
∑
j>0

2jaP(Ψj)1/q.

Now, using the estimate (5.9) for P(Ψj) we obtain

(5.19)
∑
j>0

2jaP(Ψj)1/q ≲
∑
j>0

2jae−s2
j /(4tq).

Consider the integral ∫ ∞

1
e−δt/(2p)e−s2

j /(4tq)ta−1 dt.
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We split it at t = sj and estimate each part separately:∫ ∞

1
e−δt/(2p)e−s2

j /(4tq)ta−1 dt

⩽
∫ sj

1
e−s2

j /(4tq)ta−1 dt+
∫ ∞

sj

e−δt/(2p)ta−1 dt

≲ e−sj/(8q) + e−δsj/(4p) ≲ e−csj .

Recall that c = min((b − a)/(8b), δa/(4b)). Formally, the splitting above
only works when sj ⩾ 1, however, the estimate∫ ∞

1
e−δt/(2p)e−s2

j /(4tq)ta−1 dt ≲ e−csj

remains true for any sj ⩾ 0. Consequently, integrating (5.19) we get

(5.20)
∫ ∞

1
e−δt/(2p) ·

∑
j>0

2jaP(Ψj)1/qta−1 dt

⩽
∑
j>0

2jae−csj ≲
∫ ∞

1
e−cσx(s)sa−1 ds,

where in the last inequality above we used the fact that sj = σx(2j).
Combining (5.20) with (5.18) gives (5.16).

We pass to the proof of (5.17). Note that (5.15) and the assumption
(ED(δ)) imply

Sx(t) ≲ e−δt/p
∑
j>0

V (x)a2jaP(Ψj)1/q,

thus, an application of (5.20) produces∫ ∞

1
Sx(t) ta−1 dt ≲ V (x)a

∫ ∞

1
e−cσx(s)sa−1 ds,

and (5.17) is justified.
Proof of (5.14). — Using the Feynman–Kac formula (3.2) and Cauchy–

Schwarz inequality we obtain

e−tL(V a)(x) ⩽ Ex

[
V 2a(Xt)

]1/2Ex

[
e

−2
∫ t

0
V (Xs)ds

]1/2

⩽ Ex

[
V 2a(Xt)

]1/2(
e−tL(1)(x)

)1/2
.

Hence, the assumptions (ED(δ)) and (5.13) give

e−tL(V a)(x) ≲ e−δt/2
(
Exe

2ηa|Xt|
)1/2

.
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We claim that the proof of (5.14) will be completed if we show that

(5.21) Exe
2ηa|Xt| ≲ exp

(
2dη2a2t+ 2

√
dηa|x|

)
.

Indeed, the above estimate leads to∫ ∞

1
e−tL(V a)(x) ta−1 dt ≲ e

√
dηa|x|

∫ ∞

1
exp
(
−δt/2 + dη2a2t

)
ta−1 dt

≲ e
√

dηa|x|,

where in the last inequality we used the assumption η <
√
δ/(

√
2da).

It remains to justify (5.21). Since

Ex

[
e2ηa|Xt|

]
= 1

(2πt)d/2

∫
Rd

e2ηa|z|e− |x−z|2
2t dz

⩽
1

(2πt)d/2

∫
Rd

e2ηa
∑d

i=1
|zi|e− |x−z|2

2t dz

=
d∏

i=1

1√
2πt

∫
R
e2ηa|zi|e− |xi−zi|2

2t dzi

(5.22)

it suffices to focus on each of the factors in the above product separately.
A simple computation shows that

1√
2πt

∫
R
e2ηa|zi|e− |xi−zi|2

2t dzi ⩽ e2ηa|xi| 1√
2πt

∫
R
e2ηa|zi−xi|e− |xi−zi|2

2t dzi

= e2ηa|xi| 1√
2πt

∫
R
e2ηa|y|e− |y|2

2t dy

⩽ 2e2ηa|xi| 1√
2πt

∫
R
e2ηaye− |y|2

2t dy

= 2e2ηa|xi|e(2ηa)2t/2 = 2e2ηa|xi|e2η2a2t.

Hence, coming back to (5.22) and using the inequality
∑d

i=1 |xi| ⩽
√
d|x|

we obtain

Ex

[
e2ηa|Xt|

]
⩽ 2de2dη2a2t

d∏
i=1

e2ηa|xi| ≲ exp
(

2dη2a2t+ 2
√
dηa|x|

)
,

thus proving the claim (5.21).
The proof of Proposition 5.2 is thus completed. □

By a comparison with the Hermite semigroup we can improve Propo-
sition 5.2 in the full range a > 0 for potentials V which grow at infinity
faster than |x|2.
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Proposition 5.3. — Let c, b,N be positive constants. Assume that V ∈
L∞

loc is an a.e. non-negative potential that satisfies c|x|2 ⩽ V (x) for a.e.
|x| ⩾ N and V (x) ≲ eb|x|2 . Denote µ = d1/3

5N2 . Then, for each 0 < a ⩽
µ tanh µ

2
4b we have ∫ ∞

1
e−tL(V a)(x) ta−1dt ≲ 1, x ∈ Rd.

Proof. — Denote by ω a C∞
c function which is equal to c|x|2 for |x| ⩽ N,

is bounded by c|x|2, and vanishes for |x| ⩾ 2N. Then, for all k ∈ (0, 1], we
have

V (x) + kω(x) ⩾ ck|x|2, for a.e. x ∈ Rd.

Hence, using (3.2) and Cauchy–Schwarz inequality we obtain

(5.23) e−tL(V a)(x)

= Ex

[
e

−
∫ t

0
V (Xs)ds

V a(Xt)
]

= Ex

[
e

−
∫ t

0
(V +kω)(Xs)ds

V a(Xt) · ek
∫ t

0
ω(Xs)ds

]
⩽

(
Ex

[
e

−2
∫ t

0
(V +kω)(Xs)ds

V 2a(Xt)
])1/2

·
(
Exe

2k
∫ t

0
ω(Xs)ds

)1/2

⩽

(
Ex

[
e

−2ck
∫ t

0
|Xs|2ds

V 2a(Xt)
])1/2

·
(
Exe

2k
∫ t

0
ω(Xs)ds

)1/2

=
(
e−t(− ∆

2 +2ck|x|2)(V 2a)(x)
)1/2

·
(
Exe

2k
∫ t

0
ω(Xs)ds

)1/2
.

In what follows we denote

γ = γ(c, k) = 2
√
ck.

Throughout the proof the implicit constants in ≲ depend on k ∈ (0, 1],
thus also on γ. Appropriate k and γ will be fixed at a later stage. From [26,
4.1.2] or [23, 1.4] we deduce that

e−t(− ∆
2 +2ck|x|2)f(x) = e−t(− ∆

2 + γ2
2 |x|2)f(x) =

( γ
2π

)d/2 ∫
Rd

Kγ
t (x, y)f(y) dy,

with

Kγ
t (x, y) = 1

(sinh γt)d/2 exp
(

−γ

2

(
|x|2 + |y|2

)
coth γt+ γ⟨x, y⟩

sinh γt

)
= 1

(sinh γt)d/2 exp
(

−γ|x− y|2

4 tanh γt
2

−
γ tanh γt

2
4 |x+ y|2

)
.
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Using the upper bound on V we estimate e−t(− ∆
2 + γ2

2 |x|2)(V 2a) as follows

(5.24) e−t(− ∆
2 + γ2

2 |x|2)(V 2a)(x)

≲
1

(sinh γt)d/2

∫
Rd

V (y)2a exp
(

−γ|x− y|2

4 tanh γt
2

−
γ tanh γt

2
4 |x+ y|2

)
dy

≲ e− dγt
2

∫
Rd

exp
(

2ab|y|2 − γ|x− y|2

4 tanh γt
2

−
γ tanh γt

2
4 |x+ y|2

)
dy

Rewriting the exponents we obtain

2ab|y|2 − γ|x− y|2

4 tanh γt
2

−
γ tanh γt

2
4 |x+ y|2

=
(

2ab− γ coth γt
2

)∣∣∣∣y + γ csch γt
4ab− γ coth γtx

∣∣∣∣2
−

(
γ coth γt

2 + (γ csch γt)2

8ab− 2γ coth γt

)
|x|2.

We see that for the integral in (5.24) to be finite the quantity φ(t) := 2ab−
γ coth γt

2 has to be negative for all t ⩾ 1, which is satisfied for a ⩽
γ tanh γ

2
4b

since γ tanh γ
2

4b < γ coth γt
4b . For such a we have φ(t) ⩽ γ

2 (tanh γ
2 − coth γt)

and

∫
Rd

exp
(

2ab|y|2 − γ|x− y|2

4 tanh γt
2

−
γ tanh γt

2
4 |x+ y|2

)
dy

= exp
(

−

(
γ coth γt

2 + (γ csch γt)2

4φ(t)

)
|x|2
)∫

Rd

eφ(t)|y|2
dy

⩽ exp
(

−γ

2

(
coth γt+ csch2 γt

tanh γ
2 − coth γt

)
|x|2
)(

− π

φ(t)

)d/2
.

Denoting ψ(t) := coth γt+ csch2 γt
tanh γ

2 −coth γt
a calculation gives

ψ′(t) = −
γ csch2 γt ·

(
−1 + tanh2 γ

2
)(

tanh γ
2 − coth γt

)2 .

Since ψ′ is positive the function ψ is strictly increasing. Moreover it has a
zero at t = 1

2 so that for t ⩾ 1 we have ψ(t) ⩾ ψ(1) = δ > 0 and thus we
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can continue the previous calculation as follows

exp
(

−γ

2

(
coth γt+ csch2 γt

tanh γ
2 − coth γt

)
|x|2
)(

− π

φ(t)

)d/2

≲ e− γδ|x|2
2 (−φ(t))−d/2

Next we need to handle the term (−φ(t))−d/2. Since a ⩽
γ tanh γ

2
4b we see

that

(−φ(t))−d/2 ≲
(
γ
(

coth γt− tanh γ2

))−d/2
≲ 1, t ⩾ 1.

Finally plugging the above estimates in (5.24) we get

(5.25) e−t(− ∆
2 + γ2

2 |x|2)(V 2a)(x) ≲ e− dγt
2 e− γδ|x|2

2 ,

uniformly in x ∈ Rd and t ⩾ 1.

Next we estimate
(
Exe

2k
∫ t

0
ω(Xs)ds

)1/2
. Since ω ⩽ 4cN2

1P for P =

[−2N, 2N ] ×Rd−1, we can apply Lemma 4.2 with k′ = 4ckN2, which gives

(5.26) Exe
2k
∫ t

0
ω(Xs)ds ≲ e512c2k2N6t = e32γ4N6t

Combining (5.25) and (5.26) and coming back to (5.23) we reach∫ ∞

1
e−tL(V a)(x) ta−1dt ≲ e− γδ|x|2

4

∫ ∞

1
e− dγt

4 e16γ4N6tta−1dt ≲ 1, x ∈ Rd,

provided that γ < d1/3

4N2 . This can be achieved by taking k = min(1, µ2/(4c)),
since for such k we have

γ = 2
√
ck ⩽ µ <

d1/3

4N2 .

The proof of Proposition 5.3 is thus completed. □

We shall now derive L1 boundedness ofRa
V using Proposition 5.1 together

with one of the Propositions 5.2, 5.3 and 5.7.
Combining Proposition 5.1 and Proposition 5.2 we get a theorem on

the L1 boundedness of Ra
V . Note that this theorem inherits the stronger

assumptions on V from Proposition 5.2. Its advantage is the allowance of
large a when V (x) ≲ eη|x| with small η. This is useful for instance when
V (x) ≈g |x|α.

Theorem 5.4. — Let V be an a.e. non-negative potential having an
exponential growth (5.13) for some η > 0 and such that e−tL has an ex-
ponential decay (ED(δ)) of an order δ > 0. Let 0 < a < δ1/2(2d)−1/2η−1,
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take b > a and let c be the constant defined in (5.11). If

Ka
c (V )(x) ≲g 1 and Ib(V )(x) ≲g 1,

then Ra
V is bounded on L1.

Proof. — By duality it suffices to estimate the L∞ norm of

(5.27) 1
Γ(a)

∫ ∞

0
e−tL(V a)ta−1 dt

= 1
Γ(a)

∫ 1

0
e−tL(V a)ta−1 dt+ 1

Γ(a)

∫ ∞

1
e−tL(V a)ta−1 dt

=: L+G.

Using the bound eη|x| ≲ e|x|2/(4a) and (5.5) from Proposition 5.1 we see
that

L(x) ≲ C(N),
whenever |x| ⩽ N. Then (5.10) together with (5.4) from Proposition 5.1
gives

∥L∥∞ ≲ 1.
The estimate

∥G∥∞ ≲ 1
is a straightforward consequence of our assumptions and Proposition 5.2.

□

Proposition 5.1 and Proposition 5.3 allow us to improve Theorem 5.4
for potentials that grow at least as a constant times |x|2. The improvement
comes from the replacement of the conditionKa

c (V )(x) ≲g 1 by Ja(V )(x) ≲
1. This is useful e.g. for potentials V (x) = β|x|, β > 1, for which Ka

c (V )
may be unbounded.

Theorem 5.5. — Let 0 < a < ∞ and let V be an a.e. non-negative
potential which satisfies, for some c > 0 the estimate c|x|2 ≲g V (x). Assume
that for all ε > 0 we have V (x) ≲ε e

ε|x|2
. If

Ja(V )(x) ≲g and Ia(V )(x) ≲g 1,

then Ra
V is bounded on L1.

Proof. — We use the splitting (5.27) again. The estimate ∥G∥∞ ≲ 1 is
a consequence of Proposition 5.3. Indeed, the assumption V (x) ≲ eε|x|2

with arbitrarily small ε > 0 implies that we can apply Proposition 5.3 with
arbitrarily large a > 0. The bound ∥L∥∞ ≲ 1 follows from the assumptions
and Proposition 5.1 as in the proof of Theorem 5.4. □
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As a corollary of Theorems 5.4 and 5.5 we obtain the L1(Rd) boundedness
of Ra

V for various classes of potentials. The corollary below is a restatement
of Theorem D from the introduction.

Corollary 5.6. — Let V : Rd → [0,∞) be a function in L∞
loc. Then in

all the three cases
(1) V (x) ≈ 1 globally
(2) For some α > 0 we have V (x) ≈ |x|α globally
(3) For some β > 1 we have V (x) ≈ β|x| globally

each of the Riesz transforms Ra
V , a > 0, is bounded on L1(Rd).

Remark. — Similarly to Corollary 4.6 the Euclidean norm | · | in (2) and
(3) can be replaced by an arbitrary norm on Rd.

Proof. — In the proof implicit constants in ≲, ≳, and ≈ do not depend
on x ∈ Rd but may depend on a > 0, α > 0 or β > 1.

Note that in all three cases the assumptions of Lemma 4.1 are satisfied
so that the semigroup e−tL satisfies (ED(δ)).

In case (1) we merely use (ED(δ)) and obtain
1

Γ(a)

∫ ∞

0
e−tL(V a)(x)ta−1 dt ≲ 1

Γ(a)

∫ ∞

0
∥e−tL(1)∥∞ ta−1 dt ≲ 1,

uniformly in x ∈ Rd.

In the treatment of the remaining cases we will apply Theorem 5.4 in
case (2) and Theorem 5.5 in case (3).

We start with case (2); the task is to check that the assumptions of
Theorem 5.4 hold. Clearly (5.13) is true for any η > 0. In the proof of
Corollary 4.6 we justified in (4.27) that Ib(V )(x) ≲g 1 for any b > 0.
Finally we need to control Ka

c (V )(x). To this end we shall estimate σx(s)
from below. Let C, N , m and M be non-negative constants such that

m|x|α < V (x) < M |x|α for a.e. |x| > N

and
V (x) ⩽ C for a.e. |x| ⩽ N.

Take |x| ⩾ N and assume that |x−y| < ε|x|s1/α, where ε > 0 is a constant
to be determined in a moment. Then

|y| ⩽ |x| + |x− y| ⩽ |x|(1 + εs1/α)

so that for |y| > N we have

V (y) ⩽M |y|α ⩽M |x|α
(

1 + εs1/α
)α

⩽MA|x|α(1 + εαs)
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for some constant A ⩾ 1 depending only on α. On the other hand

V (x) ⩾ m|x|α

so taking ε such that MAεα = m/2 we see that the inequality |x − y| <
ε|x|s1/α implies

V (y) ⩽MA|x|α(1 + εαs) ⩽MA|x|α + sV (x)/2

⩽

(
MA

m
+ s

2

)
V (x) ⩽ sV (x),

whenever s is large enough (independently of x). Thus we proved that
σx(s) ⩾ ε|x|s1/α for such s and a.e. |x| ⩾ N . Consequently,

Ka
c (V )(x) ≲g 1 +

∫ ∞

1
e−cε|x|s1/α

sa−1 ds ≲g 1

for any a, c > 0 and an application of Theorem 5.4 completes the proof in
case (2).

Finally we justify case (3). It is clear that c|x|2 ≲g V (x) ≲ eε|x|2 for some
c > 0 and all ε > 0. Moreover, in the proof of Corollary 4.6 in (4.30) we
justified that Ia(V )(x) ≲g 1. Thus, in order to use Theorem 5.5 it remains
to estimate Ja(V )(x). Similarly, to case (2) we shall estimate σx(s) from
below. Let M > 0 be a constant such that V (y) ⩽ Mβ|y|, for a.e. y ∈ Rd

and let N, m be non-negative constants such that mβ|x| < V (x) for a.e.
|x| ⩾ N. Take |x| ⩾ N, s ⩾ 1 and assume that |x− y| < 1

2 logβ s. Then we
have |y| ⩽ |x| + 1

2 logβ s, so that

V (y) ⩽Ms1/2β|x| ⩽
M

m
s1/2V (x) ⩽ sV (x),

for s large enough (independently of y and x). In other words we proved
that σx(s) ⩾ 1

2 logβ s whenever |x| ⩾ N and s is uniformly large enough.
Consequently,

Ja(V )(x) ≲g 1 +
∫ ∞

1
e−(logβ s)2/32sa−1 ds ≲g 1

for any a > 0 and an application of Theorem 5.5 completes the proof in
case (3). □

We finish this section with improved results for Riesz transforms Ra
V

in the range 0 < a < 1. These results are not needed in the proof of
Corollary 5.6, however they might by useful in other cases.

Using the L1 boundedness of R1
V one may improve Proposition 5.2 in

the range 0 ⩽ a ⩽ 1.
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Proposition 5.7. — Let a ⩽ 1 and assume that e−tL satisfies (ED(δ))
with some δ > 0. Then the estimate∫ ∞

1
e−tL(V a)(x) ta−1dt ≲ 1

holds uniformly in x ∈ Rd.

Proof. — Observe that for a ⩽ 1 we have

e−tL(V a)(x) ⩽ e−tL(V )(x) + e−tL(1)(x),

so that

(5.28)
∫ ∞

1
e−tL(V a)(x) ta−1dt

⩽
∫ ∞

1
e−tL(V )(x) ta−1dt+

∫ ∞

1
e−tL(1)(x) ta−1dt.

From e.g. [2, Theorem 4.3] we see that the operator R1
V is bounded on L1

which, by duality, means that the first integral in (5.28) is bounded indepen-
dently of x. Boundedness of the second integral follows from (ED(δ)). □

Finally, combining Proposition 5.7 and Proposition 5.1 we obtain an
improved version of Theorem 5.4 in the range 0 < a ⩽ 1.

Theorem 5.8. — Let 0 < a ⩽ 1 and let V be an a.e. non-negative
potential which satisfies the growth estimate V (x) ≲ exp

(
|x|2/(4a)

)
and

such that e−tL has an exponential decay (ED(δ)) for some δ > 0. If

Ja(V )(x) ≲g 1 and Ia(V )(x) ≲g 1,

then Ra
V is bounded on L1.

Proof. — We use the splitting (5.27). The estimate ∥G∥∞ ≲ 1 is
an immediate consequence of Proposition 5.7. The bound ∥L∥∞ ≲ 1
follows from the assumptions and Proposition 5.1 as in the proof of
Theorem 5.4. □
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