We define the zero-th Gauss-Manin stratification of a stratified bundle with respect to a smooth morphism and use it to study the homotopy sequence of stratified fundamental group schemes.
On définit la stratification de Gauss-Manin d’un fibré stratifié relativement à un morphisme lisse et on l’utilise pour étudier la suite d’homotopie des groupes fondamentaux stratifiés.
Keywords: Stratified bundle, Gauss-Manin stratification, homotopy sequence
Mot clés : Fibré stratifié, Stratification de Gauss-Manin, Suite d’homotopie
@article{AIF_2013__63_6_2267_0, author = {Ph\`ung, H\^o Hai}, title = {Gauss-Manin stratification and stratified fundamental group schemes}, journal = {Annales de l'Institut Fourier}, pages = {2267--2285}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {63}, number = {6}, year = {2013}, doi = {10.5802/aif.2829}, mrnumber = {3237447}, zbl = {1298.14022}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2829/} }
TY - JOUR AU - Phùng, Hô Hai TI - Gauss-Manin stratification and stratified fundamental group schemes JO - Annales de l'Institut Fourier PY - 2013 SP - 2267 EP - 2285 VL - 63 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2829/ DO - 10.5802/aif.2829 LA - en ID - AIF_2013__63_6_2267_0 ER -
%0 Journal Article %A Phùng, Hô Hai %T Gauss-Manin stratification and stratified fundamental group schemes %J Annales de l'Institut Fourier %D 2013 %P 2267-2285 %V 63 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2829/ %R 10.5802/aif.2829 %G en %F AIF_2013__63_6_2267_0
Phùng, Hô Hai. Gauss-Manin stratification and stratified fundamental group schemes. Annales de l'Institut Fourier, Volume 63 (2013) no. 6, pp. 2267-2285. doi : 10.5802/aif.2829. https://aif.centre-mersenne.org/articles/10.5802/aif.2829/
[1] Notes on crystalline cohomology, Princeton Univ. Press, 1978 | MR | Zbl
[2] Tannakian Categories, Hodge Cycles, Motives, and Shimura Varieties (Lectures Notes in Mathematics), Volume 900, Springer-Verlag, 1981, pp. 101-228 | Zbl
[3] Simply connected projective manifolds incharacteristic have no nontrivial stratified bundles, Inventiones Mathematicae, Volume 181 (2010), pp. 449-465 | DOI | MR | Zbl
[4] The Gauss-Manin connection and Tannaka duality, Int. Math. Res. Not., Art. ID 93978 (2006), pp. 1-35 | MR | Zbl
[5] On Nori’s Fundamental Group Scheme, Progress in Mathematics, Volume 265 (2007), pp. 377-398 | DOI | MR | Zbl
[6] Flat vector bundles, Annali della Scuola Normale Superiore di Pisa (1975) no. 1, pp. 1-31 | Numdam | MR | Zbl
[7] Éléments de Géométrie Algébrique III, (EGA 3), 17, Publication Math. IHES, 1963
[8] Éléments de Géométrie Algébrique IV (EGA 4), 32, Publication Math. IHES, 1967
[9] Algebraic geometry, Springer, 1977 | MR | Zbl
[10] Nilpotent connections and the monodromy theorem: applications of a result of Turrittin, Publ. Math. IHES, Volume 39 (1970), pp. 175-232 | DOI | EuDML | Numdam | MR | Zbl
[11] Cohomology of the infinitesimal site, Annales scientifiques E.N.S., Volume 8 (1975) no. 3, pp. 295-318 | EuDML | Numdam | MR | Zbl
[12] Fundamental group schemes for stratified sheaves, Journal of Algebra, Volume 317 (2007), pp. 691-713 | DOI | MR | Zbl
[13] The behaviour of the differential Galois group on the generic and special fibres: A Tannakian approach, J. reine angew. Math., Volume 637 (2009), pp. 63-98 | MR | Zbl
Cited by Sources: