[Obstructions à déformer des courbes sur une variété de dimension 3, II : Déformations des courbes dégénérées sur une variété de del Pezzo]
Nous étudions le schéma de Hilbert des courbes lisses connexes sur une variété de del Pezzo lisse de dimension 3. Nous montrons qu’aucune courbe dégénérée, c’est-à-dire, aucune courbe contenue dans une section hyperplane de , se déforme en une courbe non-dégénérée, si les deux conditions suivantes sont satisfaites : (i) et (ii) pour chaque droite sur telle que , le fibré normal de dans est trivial. Par conséquent, nous prouvons un analogue (pour ) d’une conjecture de J. O. Kleppe, qui concerne les composantes non-réduites du schéma de Hilbert des courbes dans l’espace projectif de dimension 3.
We study the Hilbert scheme of smooth connected curves on a smooth del Pezzo -fold . We prove that any degenerate curve , i.e. any curve contained in a smooth hyperplane section of , does not deform to a non-degenerate curve if the following two conditions are satisfied: (i) and (ii) for every line on such that , the normal bundle is trivial (i.e. ). As a consequence, we prove an analogue (for ) of a conjecture of J. O. Kleppe, which is concerned with non-reduced components of the Hilbert scheme of curves in the projective -space .
Keywords: Hilbert scheme, infinitesimal deformation, del Pezzo variety
Mot clés : schéma de Hilbert, déformations infinitésimales, variété de del Pezzo
Nasu, Hirokazu 1
@article{AIF_2010__60_4_1289_0, author = {Nasu, Hirokazu}, title = {Obstructions to deforming curves on a $3$-fold, {II:} {Deformations} of degenerate curves on a del {Pezzo} $3$-fold}, journal = {Annales de l'Institut Fourier}, pages = {1289--1316}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {4}, year = {2010}, doi = {10.5802/aif.2555}, mrnumber = {2722242}, zbl = {1198.14004}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2555/} }
TY - JOUR AU - Nasu, Hirokazu TI - Obstructions to deforming curves on a $3$-fold, II: Deformations of degenerate curves on a del Pezzo $3$-fold JO - Annales de l'Institut Fourier PY - 2010 SP - 1289 EP - 1316 VL - 60 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2555/ DO - 10.5802/aif.2555 LA - en ID - AIF_2010__60_4_1289_0 ER -
%0 Journal Article %A Nasu, Hirokazu %T Obstructions to deforming curves on a $3$-fold, II: Deformations of degenerate curves on a del Pezzo $3$-fold %J Annales de l'Institut Fourier %D 2010 %P 1289-1316 %V 60 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2555/ %R 10.5802/aif.2555 %G en %F AIF_2010__60_4_1289_0
Nasu, Hirokazu. Obstructions to deforming curves on a $3$-fold, II: Deformations of degenerate curves on a del Pezzo $3$-fold. Annales de l'Institut Fourier, Tome 60 (2010) no. 4, pp. 1289-1316. doi : 10.5802/aif.2555. https://aif.centre-mersenne.org/articles/10.5802/aif.2555/
[1] Obstructions to deforming a space curve, Trans. Amer. Math. Soc., Volume 267 (1981), pp. 83-94 | DOI | MR | Zbl
[2] D’autres composantes non réduites de , Math. Ann., Volume 277 (1987), pp. 433-446 | DOI | MR | Zbl
[3] Determining obstructions for space curves, with applications to non-reduced components of the Hilbert scheme, J. Reine Angew. Math., Volume 439 (1993), pp. 11-44 | DOI | MR | Zbl
[4] On the structure of polarized manifolds with total deficiency one. I, J. Math. Soc. Japan, Volume 32 (1980), pp. 709-725 | DOI | MR | Zbl
[5] On the structure of polarized manifolds with total deficiency one. II, J. Math. Soc. Japan, Volume 33 (1981), pp. 415-434 | DOI | MR | Zbl
[6] Fano threefolds. I, Math. USSR-Izvstija, Volume 11 (1977) no. 3, pp. 485-527 | DOI | MR | Zbl
[7] Anticanonical models of three-dimensional algebraic varieties, Current problems in mathematics, J. Soviet Math., Volume 13 (1980), pp. 745-814 | DOI | MR | Zbl
[8] Non-reduced components of the Hilbert scheme of smooth space curves., Space curves, Proc. Conf., Rocca di Papa/Italy 1985, Lect. Notes in Math. 1266, 181–207, 1987 | MR | Zbl
[9] Liaison of families of subschemes in , Algebraic curves and projective geometry (Trento, 1988) (Lecture Notes in Math.), Volume 1389, Springer, Berlin, 1989, pp. 128-173 | MR | Zbl
[10] The Hilbert scheme of space curves of small diameter, Annales de l’institut Fourier, Volume 56 (2006) no. 5, pp. 1297-1335 | DOI | Numdam | MR | Zbl
[11] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 32, Springer-Verlag, Berlin, 1996 | MR | Zbl
[12] Cubic forms, North-Holland Mathematical Library, 4, North-Holland Publishing Co., Amsterdam, 1986 (Algebra, geometry, arithmetic, Translated from the Russian by M. Hazewinkel) | MR | Zbl
[13] Obstructions to deforming curves on a 3-fold. I. A generalization of Mumford’s example and an application to Hom schemes, J. Algebraic Geom., Volume 18 (2009) no. 4, pp. 691-709 | DOI | MR | Zbl
[14] Further pathologies in algebraic geometry, Amer. J. Math., Volume 84 (1962), pp. 642-648 | DOI | MR | Zbl
[15] Obstructions to deforming space curves and non-reduced components of the Hilbert scheme, Publ. Res. Inst. Math. Sci., Volume 42 (2006) no. 1, pp. 117-141 | DOI | MR | Zbl
Cité par Sources :