On the Briançon-Skoda theorem on a singular variety
Annales de l'Institut Fourier, Volume 60 (2010) no. 2, p. 417-432
Let Z be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring 𝒪 Z ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.
Soit Z un germe d’un espace analytique réduit de dimension pure. Nous donnons une démonstration analytique du théorème de Briançon-Skoda pour l’anneau local 𝒪 Z . Ce résultat a déjà été démontré par Huneke en utilisant des méthodes algébriques. Nous obtenons également un résultat beaucoup plus fort pour les idéaux engendrés par peu d’éléments.
DOI : https://doi.org/10.5802/aif.2527
Classification:  32C30,  32A27,  13A05
Keywords: Briançon-Skoda theorem, analytic space, residue current
@article{AIF_2010__60_2_417_0,
     author = {Andersson, Mats and Samuelsson, H\aa kan and Sznajdman, Jacob},
     title = {On the Brian\c con-Skoda theorem on a singular variety},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {60},
     number = {2},
     year = {2010},
     pages = {417-432},
     doi = {10.5802/aif.2527},
     zbl = {1200.32007},
     mrnumber = {2667781},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2010__60_2_417_0}
}
Andersson, Mats; Samuelsson, Håkan; Sznajdman, Jacob. On the Briançon-Skoda theorem on a singular variety. Annales de l'Institut Fourier, Volume 60 (2010) no. 2, pp. 417-432. doi : 10.5802/aif.2527. https://aif.centre-mersenne.org/item/AIF_2010__60_2_417_0/

[1] Andersson, Mats Coleff-Herrera currents, duality, and Noetherian operators (Preprint Gothenburg (2009), available at arXiv:0902.3064)

[2] Andersson, Mats A residue criterion for strong holomorphicity (Ark. Mat., (to appear) available at arXiv:0711.2863)

[3] Andersson, Mats Integral representation with weights. I, Math. Ann., Tome 326 (2003) no. 1, pp. 1-18 | Article | MR 1981609 | Zbl 1024.32005

[4] Andersson, Mats Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Tome 128 (2004) no. 6, pp. 481-512 | Article | MR 2074610 | Zbl 1086.32005

[5] Andersson, Mats Explicit versions of the Briançon-Skoda theorem with variations, Michigan Math. J., Tome 54 (2006) no. 2, pp. 361-373 | Article | MR 2252765 | Zbl 1155.32004

[6] Andersson, Mats Integral representation with weights. II. Division and interpolation, Math. Z., Tome 254 (2006) no. 2, pp. 315-332 | Article | MR 2262705 | Zbl 1104.32002

[7] Andersson, Mats; Götmark, E. Explicit representation of membership of polynomial ideals (Preprint Mittag-Leffler (2008), available at arXiv:0806.2592)

[8] Andersson, Mats; Samuelsson, Håkan Koppelman formulas and the ¯-equation on an analytic space (Preprint Mittag-Leffler (2008), available at arXiv:0801.0710)

[9] Andersson, Mats; Wulcan, Elizabeth Decomposition of residue currents (J. reine angew. Math., (to appear), available at arXiv:0710.2016)

[10] Andersson, Mats; Wulcan, Elizabeth Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. (4), Tome 40 (2007) no. 6, pp. 985-1007 | Numdam | MR 2419855 | Zbl 1143.32003

[11] Berenstein, Carlos A.; Gay, Roger; Vidras, Alekos; Yger, Alain Residue currents and Bezout identities, Birkhäuser Verlag, Basel, Progress in Mathematics, Tome 114 (1993) | MR 1249478 | Zbl 0802.32001

[12] Björk, Jan-Erik Residues and 𝒟-modules, The legacy of Niels Henrik Abel, Springer, Berlin (2004), pp. 605-651 | MR 2077588

[13] Coleff, Nicolas R.; Herrera, Miguel E. Les courants résiduels associés à une forme méromorphe, Springer, Berlin, Lecture Notes in Mathematics, Tome 633 (1978) | MR 492769 | Zbl 0371.32007

[14] Eisenbud, David Commutative algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 150 (1995) (With a view toward algebraic geometry) | MR 1322960 | Zbl 0819.13001

[15] Henkin, Gennadi; Passare, Mikael Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths, Invent. Math., Tome 135 (1999) no. 2, pp. 297-328 | Article | MR 1666771 | Zbl 0932.32012

[16] Huneke, Craig Uniform bounds in Noetherian rings, Invent. Math., Tome 107 (1992) no. 1, pp. 203-223 | Article | MR 1135470 | Zbl 0756.13001

[17] Hyry, Eero; Villamayor U., Orlando A Briançon-Skoda theorem for isolated singularities, J. Algebra, Tome 204 (1998) no. 2, pp. 656-665 | Article | MR 1624420 | Zbl 0928.13006

[18] Jonsson, M.; Wulcan, E. On Bochner-Martinelli residue currents and their annihilator ideals, Ann. Inst. Fourier (Grenoble), Tome 59 (2009) no. 6, pp. 2119-2142 | Article | Numdam

[19] Lejeune-Jalabert, M.; Teissier, B.; Risler, J.-J. Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse Math. (6), Tome 17 (2008) no. 4, pp. 781-859 | Article | Numdam | MR 2499856 | Zbl 1171.13005

[20] Lipman, Joseph; Sathaye, Avinash Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J., Tome 28 (1981) no. 2, pp. 199-222 | Article | MR 616270 | Zbl 0438.13019

[21] Lipman, Joseph; Teissier, Bernard Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J., Tome 28 (1981) no. 1, pp. 97-116 | Article | MR 600418 | Zbl 0464.13005

[22] Passare, Mikael; Tsikh, August; Yger, Alain Residue currents of the Bochner-Martinelli type, Publ. Mat., Tome 44 (2000) no. 1, pp. 85-117 | MR 1775747 | Zbl 0964.32003

[23] Samuelsson, Håkan Regularizations of products of residue and principal value currents, J. Funct. Anal., Tome 239 (2006) no. 2, pp. 566-593 | Article | MR 2261338 | Zbl 1111.32005

[24] Scheja, Günter Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann., Tome 144 (1961), pp. 345-360 | Article | MR 148941 | Zbl 0112.38001

[25] Skoda, Henri Application des techniques L 2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4), Tome 5 (1972), pp. 545-579 | Numdam | MR 333246 | Zbl 0254.32017

[26] Skoda, Henri; Briançon, Joël Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de C n , C. R. Acad. Sci. Paris Sér. A, Tome 278 (1974), pp. 949-951 | MR 340642 | Zbl 0307.32007

[27] Sznajdman, J. An elementary proof of the Briançon-Skoda theorem (Preprint Gothenburg 2008, available at arXiv:0807.0142)

[28] Wulcan, Elizabeth Residue currents of monomial ideals, Indiana Univ. Math. J., Tome 56 (2007) no. 1, pp. 365-388 | Article | MR 2305939 | Zbl 1120.32004