On the Briançon-Skoda theorem on a singular variety
Annales de l'Institut Fourier, Volume 60 (2010) no. 2, pp. 417-432.

Let Z be a germ of a reduced analytic space of pure dimension. We provide an analytic proof of the uniform Briançon-Skoda theorem for the local ring 𝒪 Z ; a result which was previously proved by Huneke by algebraic methods. For ideals with few generators we also get much sharper results.

Soit Z un germe d’un espace analytique réduit de dimension pure. Nous donnons une démonstration analytique du théorème de Briançon-Skoda pour l’anneau local 𝒪 Z . Ce résultat a déjà été démontré par Huneke en utilisant des méthodes algébriques. Nous obtenons également un résultat beaucoup plus fort pour les idéaux engendrés par peu d’éléments.

DOI: 10.5802/aif.2527
Classification: 32C30,  32A27,  13A05
Keywords: Briançon-Skoda theorem, analytic space, residue current
Andersson, Mats 1; Samuelsson, Håkan 1; Sznajdman, Jacob 1

1 Chalmers University of Technology and the University of Gothenburg Department of Mathematics 412 96 Göteborg (Sweden)
@article{AIF_2010__60_2_417_0,
     author = {Andersson, Mats and Samuelsson, H\r{a}kan and Sznajdman, Jacob},
     title = {On the {Brian\c{c}on-Skoda} theorem on a singular variety},
     journal = {Annales de l'Institut Fourier},
     pages = {417--432},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {2},
     year = {2010},
     doi = {10.5802/aif.2527},
     mrnumber = {2667781},
     zbl = {1200.32007},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2527/}
}
TY  - JOUR
AU  - Andersson, Mats
AU  - Samuelsson, Håkan
AU  - Sznajdman, Jacob
TI  - On the Briançon-Skoda theorem on a singular variety
JO  - Annales de l'Institut Fourier
PY  - 2010
DA  - 2010///
SP  - 417
EP  - 432
VL  - 60
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.2527/
UR  - https://www.ams.org/mathscinet-getitem?mr=2667781
UR  - https://zbmath.org/?q=an%3A1200.32007
UR  - https://doi.org/10.5802/aif.2527
DO  - 10.5802/aif.2527
LA  - en
ID  - AIF_2010__60_2_417_0
ER  - 
%0 Journal Article
%A Andersson, Mats
%A Samuelsson, Håkan
%A Sznajdman, Jacob
%T On the Briançon-Skoda theorem on a singular variety
%J Annales de l'Institut Fourier
%D 2010
%P 417-432
%V 60
%N 2
%I Association des Annales de l’institut Fourier
%U https://doi.org/10.5802/aif.2527
%R 10.5802/aif.2527
%G en
%F AIF_2010__60_2_417_0
Andersson, Mats; Samuelsson, Håkan; Sznajdman, Jacob. On the Briançon-Skoda theorem on a singular variety. Annales de l'Institut Fourier, Volume 60 (2010) no. 2, pp. 417-432. doi : 10.5802/aif.2527. https://aif.centre-mersenne.org/articles/10.5802/aif.2527/

[1] Andersson, Mats Coleff-Herrera currents, duality, and Noetherian operators Preprint Gothenburg (2009), available at arXiv:0902.3064

[2] Andersson, Mats A residue criterion for strong holomorphicity Ark. Mat., (to appear) available at arXiv:0711.2863

[3] Andersson, Mats Integral representation with weights. I, Math. Ann., Volume 326 (2003) no. 1, pp. 1-18 | DOI | MR | Zbl

[4] Andersson, Mats Residue currents and ideals of holomorphic functions, Bull. Sci. Math., Volume 128 (2004) no. 6, pp. 481-512 | DOI | MR | Zbl

[5] Andersson, Mats Explicit versions of the Briançon-Skoda theorem with variations, Michigan Math. J., Volume 54 (2006) no. 2, pp. 361-373 | DOI | MR | Zbl

[6] Andersson, Mats Integral representation with weights. II. Division and interpolation, Math. Z., Volume 254 (2006) no. 2, pp. 315-332 | DOI | MR | Zbl

[7] Andersson, Mats; Götmark, E. Explicit representation of membership of polynomial ideals Preprint Mittag-Leffler (2008), available at arXiv:0806.2592

[8] Andersson, Mats; Samuelsson, Håkan Koppelman formulas and the ¯-equation on an analytic space Preprint Mittag-Leffler (2008), available at arXiv:0801.0710

[9] Andersson, Mats; Wulcan, Elizabeth Decomposition of residue currents J. reine angew. Math., (to appear), available at arXiv:0710.2016

[10] Andersson, Mats; Wulcan, Elizabeth Residue currents with prescribed annihilator ideals, Ann. Sci. École Norm. Sup. (4), Volume 40 (2007) no. 6, pp. 985-1007 | Numdam | MR | Zbl

[11] Berenstein, Carlos A.; Gay, Roger; Vidras, Alekos; Yger, Alain Residue currents and Bezout identities, Progress in Mathematics, 114, Birkhäuser Verlag, Basel, 1993 | MR | Zbl

[12] Björk, Jan-Erik Residues and 𝒟-modules, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 605-651 | MR

[13] Coleff, Nicolas R.; Herrera, Miguel E. Les courants résiduels associés à une forme méromorphe, Lecture Notes in Mathematics, 633, Springer, Berlin, 1978 | MR | Zbl

[14] Eisenbud, David Commutative algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995 (With a view toward algebraic geometry) | MR | Zbl

[15] Henkin, Gennadi; Passare, Mikael Abelian differentials on singular varieties and variations on a theorem of Lie-Griffiths, Invent. Math., Volume 135 (1999) no. 2, pp. 297-328 | DOI | MR | Zbl

[16] Huneke, Craig Uniform bounds in Noetherian rings, Invent. Math., Volume 107 (1992) no. 1, pp. 203-223 | DOI | MR | Zbl

[17] Hyry, Eero; Villamayor U., Orlando A Briançon-Skoda theorem for isolated singularities, J. Algebra, Volume 204 (1998) no. 2, pp. 656-665 | DOI | MR | Zbl

[18] Jonsson, M.; Wulcan, E. On Bochner-Martinelli residue currents and their annihilator ideals, Ann. Inst. Fourier (Grenoble), Volume 59 (2009) no. 6, pp. 2119-2142 | DOI | Numdam

[19] Lejeune-Jalabert, M.; Teissier, B.; Risler, J.-J. Clôture intégrale des idéaux et équisingularité, Ann. Fac. Sci. Toulouse Math. (6), Volume 17 (2008) no. 4, pp. 781-859 | DOI | Numdam | MR | Zbl

[20] Lipman, Joseph; Sathaye, Avinash Jacobian ideals and a theorem of Briançon-Skoda, Michigan Math. J., Volume 28 (1981) no. 2, pp. 199-222 | DOI | MR | Zbl

[21] Lipman, Joseph; Teissier, Bernard Pseudorational local rings and a theorem of Briançon-Skoda about integral closures of ideals, Michigan Math. J., Volume 28 (1981) no. 1, pp. 97-116 | DOI | MR | Zbl

[22] Passare, Mikael; Tsikh, August; Yger, Alain Residue currents of the Bochner-Martinelli type, Publ. Mat., Volume 44 (2000) no. 1, pp. 85-117 | MR | Zbl

[23] Samuelsson, Håkan Regularizations of products of residue and principal value currents, J. Funct. Anal., Volume 239 (2006) no. 2, pp. 566-593 | DOI | MR | Zbl

[24] Scheja, Günter Riemannsche Hebbarkeitssätze für Cohomologieklassen, Math. Ann., Volume 144 (1961), pp. 345-360 | DOI | MR | Zbl

[25] Skoda, Henri Application des techniques L 2 à la théorie des idéaux d’une algèbre de fonctions holomorphes avec poids, Ann. Sci. École Norm. Sup. (4), Volume 5 (1972), pp. 545-579 | Numdam | MR | Zbl

[26] Skoda, Henri; Briançon, Joël Sur la clôture intégrale d’un idéal de germes de fonctions holomorphes en un point de C n , C. R. Acad. Sci. Paris Sér. A, Volume 278 (1974), pp. 949-951 | MR | Zbl

[27] Sznajdman, J. An elementary proof of the Briançon-Skoda theorem (Preprint Gothenburg 2008, available at arXiv:0807.0142)

[28] Wulcan, Elizabeth Residue currents of monomial ideals, Indiana Univ. Math. J., Volume 56 (2007) no. 1, pp. 365-388 | DOI | MR | Zbl

Cited by Sources: