The fundamental groupoid scheme and applications  [ Le groupoïde fondamental et applications ]
Annales de l'Institut Fourier, Tome 58 (2008) no. 7, p. 2381-2412
Nous définissons une structure linéaire sur le groupe fondamental arithmétique π 1 (X,x) d’un schéma X défini sur un corps k de caractéristique 0. Cela nous permet de lier l’existence de sections du groupe de Galois Gal(k ¯/k) vers π 1 (X,x) à l’existence d’un foncteur neutre sur la catégorie qui linéarise ce dernier. Nous appliquons cette construction à une courbe affine et aux foncteurs neutres qui proviennent d’un vecteur tangent à l’infini. Nous pouvons ainsi suivre ce point rationnel dans le revêtement universel de la courbe affine.
We define a linear structure on Grothendieck’s arithmetic fundamental group π 1 (X,x) of a scheme X defined over a field k of characteristic 0. It allows us to link the existence of sections of the Galois group Gal(k ¯/k) to π 1 (X,x) with the existence of a neutral fiber functor on the category which linearizes it. We apply the construction to affine curves and neutral fiber functors coming from a tangent vector at a rational point at infinity, in order to follow this rational point in the universal covering of the affine curve.
DOI : https://doi.org/10.5802/aif.2418
Classification:  14F05,  14L17,  18D10
Mots clés: connexion finie, catégories tensorielles, foncteur fibre à l’infini
@article{AIF_2008__58_7_2381_0,
     author = {Esnault, H\'el\`ene and Hai, Ph\`ung H\^o},
     title = {The fundamental groupoid scheme and applications},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {58},
     number = {7},
     year = {2008},
     pages = {2381-2412},
     doi = {10.5802/aif.2418},
     zbl = {1167.14011},
     mrnumber = {2498355},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2008__58_7_2381_0}
}
Esnault, Hélène; Hai, Phùng Hô. The fundamental groupoid scheme and applications. Annales de l'Institut Fourier, Tome 58 (2008) no. 7, pp. 2381-2412. doi : 10.5802/aif.2418. https://aif.centre-mersenne.org/item/AIF_2008__58_7_2381_0/

[1] Deligne, P. Le groupe fondamental de la droite projective moins trois points, Galois groups over Q (Berkeley, CA, 1987), Springer, New York (Math. Sci. Res. Inst. Publ.) Tome 16 (1989), pp. 79-297 | MR 1012168 | Zbl 0742.14022

[2] Deligne, P. Catégories tannakiennes, The Grothendieck Festschrift, Vol. II, Birkhäuser, Boston, MA (Progr. Math.) Tome 87 (1990), pp. 111-195 | MR 1106898 | Zbl 0727.14010

[3] Deligne, P.; Milne, J. Tannakian Categories, Lectures Notes in Mathematics, Springer-Verlag, Tome 900 (1982), pp. 101-228 | Zbl 0477.14004

[4] Esnault, H.; Hai, P.H.; Sun, X.-T. On Nori group scheme, Progress in Math., Birkhäuser, Tome 265 (2007), pp. 375-396

[5] Esnault, Hélène; Hai, Phùng Hô The Gauss-Manin connection and Tannaka duality, Int. Math. Res. Not. (2006), pp. 35 (Art. ID 93978) | Article | MR 2211153 | Zbl 1105.14012

[6] Grothendieck, A. Revêtements étales et groupe fondamental, SGA 1, Lectures Notes in Mathematics, Springer-Verlag, Tome 224 (1971), pp. xxii + 447 | MR 354651

[7] Grothendieck, Alexander Brief an G. Faltings, Geometric Galois actions, 1, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 242 (1997), pp. 49-58 (With an English translation on pp. 285–293) | MR 1483106 | Zbl 0901.14002

[8] Hai, P.H. A construction of a quotient category (2006) (24 pages, preprint)

[9] Katz, Nicholas M. On the calculation of some differential Galois groups, Invent. Math., Tome 87 (1987) no. 1, pp. 13-61 | Article | MR 862711 | Zbl 0609.12025

[10] Nori, Madhav V. On the representations of the fundamental group, Compositio Math., Tome 33 (1976) no. 1, pp. 29-41 | Numdam | MR 417179 | Zbl 0337.14016

[11] Nori, Madhav V. The fundamental group-scheme, Proc. Indian Acad. Sci. Math. Sci., Tome 91 (1982) no. 2, pp. 73-122 | Article | MR 682517 | Zbl 0586.14006