Quadratic uniformity of the Möbius function
Annales de l'Institut Fourier, Volume 58 (2008) no. 6, p. 1863-1935
We prove the “Möbius and Nilsequences Conjecture” for nilsystems of step 1 and 2. This paper forms a part of our program to generalise the Hardy-Littlewood method so as to handle systems of linear equations in primes.
On établit la conjecture « Möbius et Nilsuites » pour les nilsystèmes de rang 1 et 2. Ce papier est une partie de notre programme, dont le but est une généralisation de la méthode de Hardy-Littlewood en vue d’étudier les systèmes d’équations linéaires dans les nombres premiers.
DOI : https://doi.org/10.5802/aif.2401
Classification:  11B99
Keywords: Quadratic uniformity, Möbius function
@article{AIF_2008__58_6_1863_0,
     author = {Green, Ben and Tao, Terence},
     title = {Quadratic uniformity of the M\"obius function},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l'institut Fourier},
     volume = {58},
     number = {6},
     year = {2008},
     pages = {1863-1935},
     doi = {10.5802/aif.2401},
     zbl = {1160.11017},
     mrnumber = {2473624},
     language = {en},
     url = {https://aif.centre-mersenne.org/item/AIF_2008__58_6_1863_0}
}
Quadratic uniformity of the Möbius function. Annales de l'Institut Fourier, Volume 58 (2008) no. 6, pp. 1863-1935. doi : 10.5802/aif.2401. https://aif.centre-mersenne.org/item/AIF_2008__58_6_1863_0/

[1] Auslander, L.; Green, L.; Hahn, F. Flows on homogeneous spaces, Princeton University Press, Princeton, N.J., With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. Annals of Mathematics Studies, No. 53 (1963) | Zbl 0106.36802

[2] Bilu, Yuri Structure of sets with small sumset, Astérisque (1999) no. 258, pp. xi, 77-108 (Structure theory of set addition) | MR 1701189 | Zbl 0946.11004

[3] Bourbaki, Nicolas Lie groups and Lie algebras. Chapters 1–3, Springer-Verlag, Berlin, Elements of Mathematics (Berlin) (1998) (Translated from the French, Reprint of the 1989 English translation) | MR 1728312 | Zbl 0672.22001

[4] Bourgain, J. On Λ(p)-subsets of squares, Israel J. Math., Tome 67 (1989) no. 3, pp. 291-311 | Article | MR 1029904 | Zbl 0692.43005

[5] Corwin, Lawrence J.; Greenleaf, Frederick P. Representations of nilpotent Lie groups and their applications. Part I, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 18 (1990) (Basic theory and examples) | MR 1070979 | Zbl 0704.22007

[6] Davenport, H. On some infinite series involving arithmetical functions. II, Quart. J. Math. Oxf., Tome 8 (1937), pp. 313-320 | Article

[7] Davenport, Harold Multiplicative number theory, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 74 (2000) (Revised and with a preface by Hugh L. Montgomery) | MR 1790423 | Zbl 1002.11001

[8] Furstenberg, Hillel Nonconventional ergodic averages, The legacy of John von Neumann (Hempstead, NY, 1988), Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 50 (1990), pp. 43-56 | MR 1067751 | Zbl 0711.28006

[9] Gowers, W. T. A new proof of Szemerédi’s theorem, Geom. Funct. Anal., Tome 11 (2001) no. 3, pp. 465-588 | Article | Zbl 1028.11005

[10] Green, B. J.; Tao, T. C. Linear equations in primes (to appear in Annals of Math) | Zbl 1242.11071

[11] Green, B. J.; Tao, T. C. An inverse theorem for the Gowers U 3 -norm, Proc. Edinburgh Math. Soc., Tome 51 (2008) no. 1, pp. 73-153 | Article | MR 2391635 | Zbl 1202.11013 | Zbl pre05249333

[12] Green, B. J.; Tao, T. C. The primes contain arbitrarily long arithmetic progressions, Annals of Math., Tome 167 (2008), pp. 481-547 | Article | MR 2415379 | Zbl 1191.11025 | Zbl pre05578697

[13] Green, Ben Finite field models in additive combinatorics, Surveys in combinatorics 2005, Cambridge Univ. Press, Cambridge (London Math. Soc. Lecture Note Ser.) Tome 327 (2005), pp. 1-27 | MR 2187732 | Zbl 1155.11306 | Zbl pre05117210

[14] Hua, L. K. Some results in the additive prime number theory, Quart. J. Math. Oxford, Tome 9 (1938), pp. 68-80 | Article | JFM 64.0131.02 | Zbl 0018.29404

[15] Iwaniec, Henryk; Kowalski, Emmanuel Analytic number theory, American Mathematical Society, Providence, RI, American Mathematical Society Colloquium Publications, Tome 53 (2004) | MR 2061214 | Zbl 1059.11001

[16] Mal’Cev, A. I. On a class of homogeneous spaces, Izvestiya Akad. Nauk. SSSR. Ser. Mat., Tome 13 (1949), pp. 9-32

[17] Montgomery, Hugh L. Ten lectures on the interface between analytic number theory and harmonic analysis, Published for the Conference Board of the Mathematical Sciences, Washington, DC, CBMS Regional Conference Series in Mathematics, Tome 84 (1994) | MR 1297543 | Zbl 0814.11001

[18] Ruzsa, Imre Z. On an additive property of squares and primes, Acta Arith., Tome 49 (1988) no. 3, pp. 281-289 | MR 932527 | Zbl 0636.10042

[19] Tao, Terence Arithmetic progressions and the primes, Collect. Math. (2006) no. Vol. Extra, pp. 37-88 | MR 2264205 | Zbl 1109.11043

[20] Tao, Terence; Vu, Van Additive combinatorics, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 105 (2006) | MR 2289012 | Zbl 1127.11002

[21] Vaughan, R. C. The Hardy-Littlewood method, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 125 (1997) | MR 1435742 | Zbl 0868.11046

[22] Vaughan, Robert-C. Sommes trigonométriques sur les nombres premiers, C. R. Acad. Sci. Paris Sér. A-B, Tome 285 (1977) no. 16, p. A981-A983 | MR 498434 | Zbl 0374.10025

[23] Vinogradov, I. M. Some theorems concerning the primes, Mat. Sbornik. N.S., Tome 2 (1937), pp. 179-195 | Zbl 0017.19803