In the present paper we determine for each parallelizable smooth compact manifold the second cohomology spaces of the Lie algebra of smooth vector fields on with values in the module . The case of is of particular interest since the gauge algebra of functions on with values in a finite-dimensional simple Lie algebra has the universal central extension with center , generalizing affine Kac-Moody algebras. The second cohomology classifies twists of the semidirect product of with the universal central extension of a gauge Lie algebra.
Dans le présent article, nous déterminons, pour chaque variété parallélisable compacte lisse , les espaces de seconde cohomologie de l’algèbre de Lie des champs vectoriels lisses sur à valeurs dans le module . Le cas est d’un intérêt particulier puisque l’algèbre de jauge des fonctions sur à valeurs dans une algèbre de Lie simple de dimension finie possède l’extension centrale universelle avec le centre , généralisant les algèbres de Kac-Moody affines. L’espace classifie des torsions du produit semi-direct de avec l’extension centrale universelle d’une algèbre de Lie de jauge.
Keywords: Lie algebra of vector fields, Lie algebra cohomology, Gelfand-Fuks cohomology, extended affine Lie algebra
Mot clés : algèbre de Lie des champs vectoriels, cohomologie de l’algèbre de Lie, cohomologie de Gelfand-Fuks, algèbre de Lie affine étendu
Billig, Yuly 1; Neeb, Karl-Hermann 2
@article{AIF_2008__58_6_1937_0, author = {Billig, Yuly and Neeb, Karl-Hermann}, title = {On the cohomology of vector fields on parallelizable manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1937--1982}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {6}, year = {2008}, doi = {10.5802/aif.2402}, mrnumber = {2473625}, zbl = {1157.17007}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.2402/} }
TY - JOUR AU - Billig, Yuly AU - Neeb, Karl-Hermann TI - On the cohomology of vector fields on parallelizable manifolds JO - Annales de l'Institut Fourier PY - 2008 SP - 1937 EP - 1982 VL - 58 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.2402/ DO - 10.5802/aif.2402 LA - en ID - AIF_2008__58_6_1937_0 ER -
%0 Journal Article %A Billig, Yuly %A Neeb, Karl-Hermann %T On the cohomology of vector fields on parallelizable manifolds %J Annales de l'Institut Fourier %D 2008 %P 1937-1982 %V 58 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.2402/ %R 10.5802/aif.2402 %G en %F AIF_2008__58_6_1937_0
Billig, Yuly; Neeb, Karl-Hermann. On the cohomology of vector fields on parallelizable manifolds. Annales de l'Institut Fourier, Volume 58 (2008) no. 6, pp. 1937-1982. doi : 10.5802/aif.2402. https://aif.centre-mersenne.org/articles/10.5802/aif.2402/
[1] Manifolds, Tensor Analysis, and Applications, Addison-Wesley, 1983 | MR | Zbl
[2] Realizations of graded-simple algebras as loop algebras (math.RA/0511723)
[3] Infinite-dimensional Lie superalgebras, Walter de Gruyter & Co, 1992 | MR | Zbl
[4] The de Rham complex on infinite dimensional manifolds, Quart. J. Math. Oxford, Volume 38 (1987) no. 2, pp. 131-154 | DOI | MR | Zbl
[5] The centroid of extended affine and root graded Lie algebras, J. Pure Appl. Algebra, Volume 205 (2006) no. 1, pp. 117-145 | DOI | MR
[6] Irreducible representations for toroidal Lie algebras, J. Algebra, Volume 221 (1999), pp. 188-231 | DOI | MR | Zbl
[7] Homogeneous spaces of infinitedimensional Lie algebras and characteristic classes of foliations, Russ. Math. Surveys, Volume 28 (1973) no. 4, pp. 107-142 | DOI | Zbl
[8] A category of modules for the full toroidal Lie algebra, Int. Math. Res. Not., 2006 (Art. ID 68395, 46 pp.) | MR
[9] Cohomology theory of Lie groups and Lie algebras, Transactions of the Amer. Math. Soc., Volume 63 (1948), pp. 85-124 | DOI | MR | Zbl
[10] Computations of Gelfand-Fuks cohomology, the cohomology of function spaces, and the cohomology of configuration spaces, Geometric applications of homotopy theory I (Lectures Notes Math.), Volume 657 (1978), pp. 106-173 | MR | Zbl
[11] Cohomology of the Lie algebra of smooth vector fields of a manifold, associated to the Lie derivative of smooth forms, J. Math. Pures et Appl., Volume 62 (1983), pp. 197-214 | MR | Zbl
[12] Vertex representations for -toroidal Lie algebras and a generalization of the Virasoro algebra, Comm. Math. Phys., Volume 159 (1994), pp. 239-264 | DOI | MR | Zbl
[13] Cohomologies of Lie Groups and Lie Algebras, Lie Groups and Lie Algebras II (Encyclop. Math. Sci.), Volume 21 (2001) | Zbl
[14] Cohomologie des représentations définies par la dérivation de Lie et à valeurs dans les formes, de l’algèbre de Lie des champs de vecteurs d’une variété différentiable. Premiers espaces de cohomologie. Applications, C. R. Acad. Sci. Paris, Sér. A-B, Volume 291 (1980) no. 4, p. A331-A335 | Zbl
[15] Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, London, 1986 | MR | Zbl
[16] Cohomology of the Lie algebra of formal vector fields, Izv. Akad. Nauk SSSR (1970) no. 34, pp. 322-337 | MR | Zbl
[17] Cohomology of the Lie algebra of vector fields with nontrivial coefficients, Func. Anal. and its Appl., Volume 4 (1970), pp. 181-192 | DOI | MR | Zbl
[18] Cohomologies d’algèbres de Lie de champs de vecteurs formels, Séminaire Bourbaki (1972/1973), Exp. No. 421 (Lecture Notes in Math.), Volume 383 (1974), pp. 69-87 | Numdam | Zbl
[19] Sur la cohomologie de l’algèbre de Lie des champs de vecteurs, Ann. Sci. Ec. Norm. Sup., 4e série, Volume 9 (1976), pp. 503-532 | Numdam | Zbl
[20] Cohomology of Lie algebras, Annals of Math., Volume 57 (1953) no. 3, pp. 591-603 | DOI | MR | Zbl
[21] Kähler differentials and coverings of complex simple Lie algebras extended over a commutative ring, J. Pure Applied Algebra, Volume 34 (1984), pp. 265-275 | DOI | MR | Zbl
[22] Homologie des complexes de formes différentielles d’ordre supérieur, Collection of articles dedicated to Henri Cartan on the occasion of his 70th birthday, I, Volume 7 (1974), pp. 139-153 | Numdam | Zbl
[23] Lowest-energy representations of non-centrally extended diffeomorphism algebras, Comm. Math. Phys., Volume 201 (1999), pp. 461-470 | DOI | MR | Zbl
[24] Central extensions of topological current algebras, Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups, Volume 55 (2002), pp. 61-76 | MR | Zbl
[25] Abelian extensions of infinite-dimensional Lie groups, Travaux mathématiques, Volume 15 (2004), pp. 69-194 | MR | Zbl
[26] Lie algebra extensions and higher order cocycles, J. Geom. Sym. Phys., Volume 5 (2006), pp. 48-74 | MR | Zbl
[27] Non-abelian extensions of topological Lie algebras, Communications in Algebra, Volume 34 (2006), pp. 991-1041 | DOI | MR
[28] Extended affine Lie algebras, C. R. Math. Acad. Sci. Soc. R. Can., Volume 26 (2004) no. 3, pp. 90-96 | MR | Zbl
[29] Loop Groups, Oxford University Press, Oxford, 1986 | MR | Zbl
[30] Cohomology of certain infinite-dimensional Lie algebras, Funct. Anal. Appl., Volume 13 (1971), pp. 340-342 | Zbl
[31] On the continuous cohomology of the Lie algebra of vector fields, Proc. Jap. Math. Soc., Volume 53:A (1977), pp. 134-138 | MR | Zbl
[32] Continuous cohomology of the Lie algebra of vector fields, Memoirs of the Amer. Math. Soc., Volume 253 (1981) no. 34, pp. 154p. | MR | Zbl
Cited by Sources: