Un domaine
Nous montrons que
A plane simply connected domain
where
We prove that
@article{AIF_1985__35_1_49_0, author = {Zinsmeister, Michel}, title = {Domaines r\'eguliers du plan}, journal = {Annales de l'Institut Fourier}, pages = {49--55}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {35}, number = {1}, year = {1985}, doi = {10.5802/aif.997}, zbl = {0539.30004}, mrnumber = {86k:30008}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.997/} }
TY - JOUR AU - Zinsmeister, Michel TI - Domaines réguliers du plan JO - Annales de l'Institut Fourier PY - 1985 SP - 49 EP - 55 VL - 35 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.997/ DO - 10.5802/aif.997 LA - fr ID - AIF_1985__35_1_49_0 ER -
Zinsmeister, Michel. Domaines réguliers du plan. Annales de l'Institut Fourier, Tome 35 (1985) no. 1, pp. 49-55. doi : 10.5802/aif.997. https://aif.centre-mersenne.org/articles/10.5802/aif.997/
[1] Zur Theorie des “Uberlagerungs-flächen”, Acta. Math., 65 (1935), 157-194. | JFM | Zbl
,[2] Injectivity criteria and the quasidisk, Preprint (University of Michigan). | Zbl
, ,[3] Univalence and bounded mean oscillation, Mich. Math. Journal, 23 (1976), 217-223. | MR | Zbl
,[4] Les continus cycliques et la représentation conforme, Bull. Soc. Math de France, 70 (1942), 97-125. | Numdam | MR | Zbl
,[5] Geometric measure theory, Springer Verlag, Berlin and New York, 1969. | MR | Zbl
,[6] Spirals and the universal Teichmüller space, Acta Math., 141 (1978), 99-113. | MR | Zbl
,[7] Univalent functions, Vanden-hoeck et Ruprecht, Göttingen, 1975.
,[8] Représentation conforme et courbes presque lipschitziennes, Ann Inst. Fourier, 34, 2 (1984), 29-44. | Numdam | MR | Zbl
,- Weil-Petersson Teichmüller space. III: Dependence of Riemann mappings for Weil-Petersson curves, Mathematische Annalen, Volume 381 (2021) no. 1-2, pp. 875-904 | DOI:10.1007/s00208-020-02067-5 | Zbl:7412159
- On holomorphic functions in the upper half-plane representable by Carleman formula, Complex Analysis and Operator Theory, Volume 14 (2020) no. 7, p. 14 (Id/No 66) | DOI:10.1007/s11785-020-01024-z | Zbl:1455.30033
- Separation of singularities for holomorphic functions, Analysis and Mathematical Physics, Volume 4 (2014) no. 1-2, pp. 13-21 | DOI:10.1007/s13324-014-0070-4 | Zbl:1298.32019
- On a class of holomorphic functions representable by Carleman formulas in the disk from their values on the arc of the circle, Mathematische Nachrichten, Volume 280 (2007) no. 1-2, pp. 5-19 | DOI:10.1002/mana.200410460 | Zbl:1114.30041
- Harmonic measure,
estimates and the Schwarzian derivative, Journal d'Analyse Mathématique, Volume 62 (1994), pp. 77-113 | DOI:10.1007/bf02835949 | Zbl:0801.30024 - Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Harmonic Analysis and Partial Differential Equations, Volume 1384 (1989), p. 24 | DOI:10.1007/bfb0086793
Cité par 6 documents. Sources : Crossref, zbMATH