For and an open bounded subset of definie as the closed subset of consisting of all functions that are constant almost everywhere on almost all lines parallel to . For a given set of directions , , we study for which it is true that the vector space
This problem arizes naturally in the study of image reconstruction from projections (tomography). An essentially equivalent problem is to decide whether a certain matrix-valued differential operator has closed range. If , the boundary of is a Lipschitz curve (this condition can be relaxes), and , then holds. For , , the situation is different: is not necessarily true even if is convex and has smooth boundary. On the other hand we prove that holds if is convex and the boundary has non-vanishing principal curvatures at a certain finite set of points, which is determined by the set of directions .
Soient et un ouvert borné de . Soit le sous-espace fermé de formé des fonctions constantes presque partout sur presque toutes les lignes parallèles à . Pour un ensemble donné de directions , , on veut déterminer les pour lesquels
On rencontre ce problème dans l’étude des reconstructions des images à partir des projections (tomographie). C’est un problème essentiellement équivalent que de décider si un certain opérateur à valeurs matricielles a son image fermée. Si , , et si la frontière de est une courbe lipschitzienne (cette dernière condition peut être affaiblie), alors est valable. Pour , , la situation est différente : n’est pas nécessairement vrai même si est convexe ayant une frontière lisse. Or est valable si est convexe et si en outre les courbures principales de la frontière sont non-nulles en un nombre fini de points déterminés par les .
@article{AIF_1984__34_1_207_0, author = {Boman, Jan}, title = {On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform}, journal = {Annales de l'Institut Fourier}, pages = {207--239}, publisher = {Imprimerie Louis-Jean}, address = {Gap}, volume = {34}, number = {1}, year = {1984}, doi = {10.5802/aif.957}, zbl = {0521.46018}, mrnumber = {85j:44002}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.957/} }
TY - JOUR AU - Boman, Jan TI - On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform JO - Annales de l'Institut Fourier PY - 1984 SP - 207 EP - 239 VL - 34 IS - 1 PB - Imprimerie Louis-Jean PP - Gap UR - https://aif.centre-mersenne.org/articles/10.5802/aif.957/ DO - 10.5802/aif.957 LA - en ID - AIF_1984__34_1_207_0 ER -
%0 Journal Article %A Boman, Jan %T On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform %J Annales de l'Institut Fourier %D 1984 %P 207-239 %V 34 %N 1 %I Imprimerie Louis-Jean %C Gap %U https://aif.centre-mersenne.org/articles/10.5802/aif.957/ %R 10.5802/aif.957 %G en %F AIF_1984__34_1_207_0
Boman, Jan. On the closure of spaces of sums of ridge functions and the range of the $X$-ray transform. Annales de l'Institut Fourier, Volume 34 (1984) no. 1, pp. 207-239. doi : 10.5802/aif.957. https://aif.centre-mersenne.org/articles/10.5802/aif.957/
[1] La dualité dans les espaces (F) et (LF), Ann. Inst. Fourier, 1 (1949), 61-101. | Numdam | MR | Zbl
, ,[2] Consistency conditions for a finite set of projections of a function, Math. Proc. Cambridge Philos. Soc., 85 (1979), 61-68. | MR | Zbl
,[3] The angles between the null spaces of X-rays, J Math. Anal. Appl., 62 (1978), 1-23. | MR | Zbl
, ,[4] Linear partial differential operators, Springer-Verlag, Berlin, 1963. | MR | Zbl
,[5] Linear topological spaces, Van Nostrand, 1963. | MR | Zbl
, ,[6] Optimal reconstruction of a function from its projections, Duke Math. J., 42 (1975), 645-659. 659. | MR | Zbl
, ,[7] Sums of plane waves and the range of the Radon transform, Math. Ann., 243 (1979), 153-161. | MR | Zbl
, , ,[8] Computerized tomography: the new medical X-ray technology, Amer. Math. Monthly, 85 (1978), 420-438. | Zbl
, ,[9] Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. A.M.S., 83 (1977), 1227-1270. | MR | Zbl
, , ,[10] When is the sum of closed subspaces closed? An example arising in computerized tomography, Research Report, Royal Inst. Technology (Stockholm), 1980.
,[11] Uniqueness, nonuniqueness and inversion in the X-ray and Radon problems, to appear in Proc. Internat. Symp. on III-posed Problems, Univ. of Delaware, Newark, Delaware, 1979.
, , ,Cited by Sources: