A semi-algebraic analytic manifold and a semi-algebraic analytic map are called a Nash manifold and a Nash map respectively. We clarify the category of Nash manifolds and Nash maps.
Une variété analytique semi-algébrique et une application analytique semi-algébrique sont appelées respectivement une variété de Nash et une application de Nash. Nous clarifions la catégorie des variétés de Nash et les applications de Nash.
@article{AIF_1983__33_3_209_0,
author = {Shiota, Masahiro},
title = {Classification of {Nash} manifolds},
journal = {Annales de l'Institut Fourier},
pages = {209--232},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {33},
number = {3},
year = {1983},
doi = {10.5802/aif.937},
zbl = {0495.58001},
mrnumber = {85b:58004},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.937/}
}
TY - JOUR AU - Shiota, Masahiro TI - Classification of Nash manifolds JO - Annales de l'Institut Fourier PY - 1983 SP - 209 EP - 232 VL - 33 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.937/ DO - 10.5802/aif.937 LA - en ID - AIF_1983__33_3_209_0 ER -
Shiota, Masahiro. Classification of Nash manifolds. Annales de l'Institut Fourier, Tome 33 (1983) no. 3, pp. 209-232. doi: 10.5802/aif.937
[1] , and , On real algebraic vector bundles, Bull. Sc. Math., 104 (1980), 89-112. | Zbl | MR
[2] , Resolution of singularities of an algebraic variety over a field of characteristic zero, I-II, Ann. Math., 79 (1964), 109-326. | Zbl | MR
[3] , Ensemble semi-analytique, IHES, 1965.
[4] , Two complexes which are homeomorphic but combinatorially distinct, Ann. Math., 74 (1961), 575-590. | Zbl | MR
[5] , Lectures on the h-cobordism theorem, Princeton, Princeton Univ. Press, 1965. | Zbl | MR
[6] , Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa, III 2 (1976), 245-266. | Zbl | MR | Numdam
[7] , Equivariant real algebraic differential topology, Part I, Smoothness categories and Nash manifolds, Notes Brandeis Univ., 1972. | Zbl
[8] , Sur l'anneau des fonctions de Nash globales, C.R.A.S., Paris, 276 (1973), 1513-1516. | Zbl | MR
[9] , On the unique factorization property of the ring of Nash functions, Publ. RIMS, Kyoto Univ., 17 (1981), 363-369. | Zbl | MR
[10] , Equivalence of differentiable mappings and analytic mappings, Publ. Math. IHES, 54 (1981), 237-322. | Zbl | MR | Numdam
[11] , Equivalence of differentiable functions, rational functions and polynomials, Ann. Inst. Fourier, 32, 4 (1982), 167-204. | Zbl | MR | Numdam
[12] , Sur la factorialité de l'anneau des fonctions lisses rationnelles, C.R.A.S., Paris, 292 (1981), 67-70. | Zbl | MR
Cité par Sources :



