Soit un groupe localement compact. Soit la translation à gauche dans donnée par . On caractérise (sous des axiomes peu restrictifs de théorie des ensembles) les telles que l’application de dans soit scalairement mesurable (c’est-à-dire que est mesurable pour ). On montre que c’est le cas dès que pour tout caractère de , est mesurable, et dans le cas compact, cela caractérise les fonctions Riemann-mesurables. On montre que l’image réciproque de tout borélien de par l’application est mesurable si et seulement si est uniformément continue.
Les outils de théorie de la mesure utilisés ont un intérêt en soi. Par exemple un ensemble de fonctions mesurables sur est séparable et relativement compact pour la topologie de la convergence ponctuelle, il en est de même de son enveloppe convexe.
Let be a locally compact group. Let be the left translation in , given by . We characterize (undre a mild set-theoretical hypothesis) the functions such that the map from into is scalarly measurable (i.e. for , is measurable). We show that it is the case when is measurable for each character , and if is compact, if and only if is Riemann-measurable. We show that is Borel measurable if and only if is left uniformly continuous.
Some of the measure-theoretic tools used there have independent interest. For example, if a set of measurable functions on is separable and point-wise relatively compact, the same is true of its convex hull.
@article{AIF_1982__32_1_39_0, author = {Talagrand, Michel}, title = {Closed convex hull of set of measurable functions, {Riemann-measurable} functions and measurability of translations}, journal = {Annales de l'Institut Fourier}, pages = {39--69}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, number = {1}, year = {1982}, doi = {10.5802/aif.859}, zbl = {0452.28004}, mrnumber = {83g:28007}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.859/} }
TY - JOUR AU - Talagrand, Michel TI - Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations JO - Annales de l'Institut Fourier PY - 1982 SP - 39 EP - 69 VL - 32 IS - 1 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.859/ DO - 10.5802/aif.859 LA - en ID - AIF_1982__32_1_39_0 ER -
%0 Journal Article %A Talagrand, Michel %T Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations %J Annales de l'Institut Fourier %D 1982 %P 39-69 %V 32 %N 1 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.859/ %R 10.5802/aif.859 %G en %F AIF_1982__32_1_39_0
Talagrand, Michel. Closed convex hull of set of measurable functions, Riemann-measurable functions and measurability of translations. Annales de l'Institut Fourier, Tome 32 (1982) no. 1, pp. 39-69. doi : 10.5802/aif.859. https://aif.centre-mersenne.org/articles/10.5802/aif.859/
[1] Pointwise compact sets of Baire-measurable functions, American J. of Math., 100, No. 4 (1978), 845-886. | MR | Zbl
, , ,[2] Pointwise compact sets of measurable functions, Manuscripta Math., 15 (1975), 219-242. | MR | Zbl
,[3] Measurable functions and almost continuous functions, Manuscripta Math., (to appear). | Zbl
,[4] A decomposition theorem for additive set-functions, with applications to Pettis integrals and ergodic means, Math. Z., 168 (1979), 117-142. | MR | Zbl
, ,[5] Topics in the Theory of Liftings, Springer Verlag, 1979.
. and ,[6] On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, Proceedings Fifth Berkeley Symposium on Math. and Probability, 63-97. | Zbl
. and ,[7] Invariant means for the bounded measurable functions on a non-discrete locally compact group, Math. Annalen, 220 (1976), 219-228. | MR | Zbl
,[8] Homomorphisms and translations in L∞(G), Advances in Math., 16 (1975), 72-90. | MR | Zbl
,[9] Martin's axiom, Amer. Math Monthly, 82 (1975), 610-617. | MR | Zbl
,[10] Homomorphisms and translates of bounded functions, Duke Math. J., 41 (1974), 35-39. | MR | Zbl
,Cité par Sources :