Soit une extension galoisienne de corps de nombres où les diviseurs de sont non-ramifiés dans . On note et l’anneau des entiers de . Nous considérons comme -module et nous démontrons que la quatrième puissance de la classe (localement libre) de est la classe triviale. Afin de démontrer ce résultat, nous utilisons la description de Fröhlich des groupes de classes de modules et son représentant pour la classe des . De plus, nous développons une nouvelle méthode de congruences sur les déterminants pour les algèbres des groupes cycliques et nous démontrons des congruences correspondantes pour les sommes de Gauss.
Let be a Galois extension of number fields with Gal and with property that the divisors of are non-ramified in . We denote the ring of integers of by and we study as a -module. In particular we show that the fourth power of the (locally free) class of is the trivial class. To obtain this result we use Fröhlich’s description of class groups of modules and his representative for the class of , together with new determinantal congruences for cyclic group rings and corresponding congruences for Gauss sums.
@article{AIF_1980__30_3_11_0, author = {Taylor, Martin J.}, title = {Galois module structure of rings of integers}, journal = {Annales de l'Institut Fourier}, pages = {11--48}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {3}, year = {1980}, doi = {10.5802/aif.791}, zbl = {0416.12004}, mrnumber = {82e:12008}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.791/} }
TY - JOUR AU - Taylor, Martin J. TI - Galois module structure of rings of integers JO - Annales de l'Institut Fourier PY - 1980 SP - 11 EP - 48 VL - 30 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.791/ DO - 10.5802/aif.791 LA - en ID - AIF_1980__30_3_11_0 ER -
Taylor, Martin J. Galois module structure of rings of integers. Annales de l'Institut Fourier, Tome 30 (1980) no. 3, pp. 11-48. doi : 10.5802/aif.791. https://aif.centre-mersenne.org/articles/10.5802/aif.791/
[1] Quelques théorèmes de base normale d'entiers, Ann. Inst. Fourier, 28, 3 (1978), 1-33. | Numdam | Zbl
,[2] Les constantes des équations fonctionnelles des fonctions L, Modular forms in one variable III, Lecture Notes in Mathematics, 349 (1973), 501-597. | MR | Zbl
,[3] Arithmetic and Galois module structure for tame extensions, J. reine und angew. Math., 286/287 (1976), 380-440. | MR | Zbl
,[4] To appear in the Springer Ergebnisse series.
,[5] Galois module structure, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, 1977, London. | Zbl
,[6] Locally free modules over arithmetic orders, J. reine angew. Math., 274/5 (1975), 112-124. | MR | Zbl
,[7] The arithmetic theory of local Galois Gauss sums for tame characters, to appear in the Philosophical Transactions of the Royal Society. | Zbl
and ,[8] Artin exponents of finite groups, J. Algebra, 9 (1968), 94-119. | MR | Zbl
,[9] Algebraic number theory, Addison-Wesley (1970). | MR | Zbl
,[10] Character theory and Artin L-functions, Algebraic Number fields, (Proc. Durham Symposium), Academic Press, (1977), London. | MR | Zbl
,[11] Normalbasis bei Körpern ohne höhere Verzweigung, J. reine angew. Math., 167 (1932), 147-152. | JFM | Zbl
,[12] Corps locaux, Hermann, Paris, 1968.
,[13] Représentations linéaires des groupes finis, 2nd ed., Hermann, Paris, 1971. | MR | Zbl
,[14] Local constants, Algebraic Number Fields, (Proc. Durham Symposium), Academic Press, London, 1977.
,[15] Galois module structure of relative abelian extensions, J. reine angew. Math., 303/4 (1978), 97-101. | MR | Zbl
,[16] On the self-duality of a ring of integers as a Galois module, Inventiones Mathematicae, 46 (1978), 173-177. | MR | Zbl
,[17] A logarithmic description of locally free classgroups of finite groups, to appear in the Journal of Algebra.
,Cité par Sources :