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GALOIS MODULE STRUCTURE
OF RINGS OF INTEGERS

by Martin J. TAYLOR (*)

1. Introduction.

Let E/F be a tame Galois extension of number fields with
Gal(E/F) = F. The ring of integers of E, 6 ^ , is a module over
the integral group ring ZF. In [ I I ] , E. Noether outlined a proof
that E/F being tame implies that ©^ ls a locally free ©pF module.
Hence 0^ is a locally free ZF module with rank equal to the degree
of F over the field of rationals Q.

We let Cl(Zr) denote the locally free classgroup of ZF, and
we denote the class of 0^ in Cl(Zr) by (©e). In [5], A. Frohlich
made the following remarkable conjecture:

CONJECTURE. — // F = Q, then (O^)2 = 1 . He has since con-
jectured that (O^)2 = 1, for arbitrary base field F.

The main result of this paper is to show.

THEOREM 1. — If all the prime divisors of [E:F1 are unramified
in E/Q, then (©g)4 = 1 .

Remark 7. — The condition that the prime divisors of [E:F] be
unramified in E/Q is, of course, stronger than the condition that E/F
be tame.

(*) Part of the work in this paper was done whilst I received financial support
from the C.N.R.S. and the kind hospitality of the University of Besan^on.



12 M.J. TAYLOR

Remark 2. — There is an excellent sketch of our proof of
Theorem 1 in A. Frohlich's forthcoming book [4].

Remark 3. — J. Martinet was the first to show that there exist
tame Galois extensions E/Q so that (©g) =^ 1 . A. Frohlich and
Ph. Cassou-Nogues have since proved a series of results which de-
monstrate that the question of whether (©g) is 1, or, not, is inti-
mately related to the sign of the root numbers of irreducible sym-
plectic characters of Gal(E/Q) (cf. [3] and [1]).

Remark 4. — In the course of the proof of Theorem 1, the
local root number will be seen to play a very special role (instead
of using the local Galois Gauss sum which is the usual tool). This
special role of root numbers is particularly interesting and is, as yet,
far from understood.

COROLLARY 1. — Let E/F be as in Theorem 1, and suppose
further that [E:F] is odd, then 0^ is a free ZF module of rank
[F:Q].

Proof. — From the corollary to Theorem 2 in [15], we know
that the order of (0^) divides the Artin exponent of the group F
(cf. [15] or [8] for the definition of the Artin exponent). By 1.6
of [8], we know that the Artin exponent of F divides the group
order |r|. So it is immediate from Theorem 1 that ( © g ) = l ,
i.e. ©E is a stably free ZF-module.

However, because I F j is odd, the rational group algebra QF
satisfies the Eichler condition, i.e. no simple component of QF is
a totally definite quaternion algebra. So, by Jacobinskfs Cancellation
Theorem (cf. section 3 of [6] for instance), we know that ZF
possesses the cancellation property, and thus ©g is a free ZF-module.

COROLLARY 2. - Let F = Q and suppose that the extension
E/F is of t-po^er degree, for some odd prime number £. Then
0 E is a free Z F - modu Ie.

I should like to express my warmest thanks to A.Frohlich for
numerous discussions and suggestions concerning this work.
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2. Definitions and preliminary results.

Firstly, we set up our notation and recall various results on
class groups. Our main source of reference is [3].

For a rational prime number £ , Zg is the ring of rational £-
adic integers and Qg is the rational £-adic field. If £ is the infinite
rational prime, we define Zg = Qg = R , the field of real numbers.

For any number field M, we denote the ring of integers of
M by ©M . It £ is a rational prime number, we define

M, = M ®Q Q, , ©^ == ^ ®z Z, ;

whilst if £ is the infinite rational prime, we put 0^ = Mg = M ®Q R .
For a ring R, we denote the group of units by R*.

Let Q be the algebraic closure of Q in the field of complex
numbers C, and let JLI be the group of roots of unity in Q. For
any number field M, we define S2^ = Gal(Q/M), and

Q, = Jim^Mfi U(Qg) = Jm^ ©^ .
M C Q MCQ £

Then ^Q acts on Qg and U(Qg) in the natural way. Note
that we can identify Qg with Q ®Q Qg .

If S is a finite set of rational primes, then we put
Ug(Q)= n U(Qg).

£GS

We shall denote the Jacobson radical of ©^ ^Y ^e M ^d we put
^=Un^M.

MCQ

J(M) (resp. U(M)) will denote the group of ideles of M (resp.
group of unit ideles of M), and we put

J(Q) = Urn ^ J(M) U(Q) = lim^ U(M).
MCQ MCQ

For an element x G J(Q), we let (x\ denote the image of
x under the projection J(Q) —> Qg. If q is a positive integer then
M(^) denotes the number field obtained by adjoining a primitive
0th root of unity of M .

Let E/F be a Galois extension of number fields, let \> be a
prime of F and let q be a prime of E above ^ . We denote the
decomposition group (resp. the inertia group) of q in E/F by
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A q (resp. Tq). As previously, we put F=Gal(E/F). For each
virtual character x of F we have the local root number W(xJ
and the local Galois Gauss sum r(xJ. These two terms will be
defined in section 4. However, for a more complete description see
[14] and [10].

For a finite group F, Rp is the ring of virtual characters of
r . Suppose that A is a sub-group of F. Then we have induction
and restriction homomorphisms

Ind^ : R^ —> Rp ,

Res?: Rp—^.

For X ^ R r we shall frequently write xl^ in place of Res^x).
We denote by V^ : Homz(A , p) —> Hom^F , p.) the co-transfer
homomorphism.

Suppose that TT : F —> 2 is a surjective group homomorphism.
Then composition with TT yields the inflation homomorphism
Inf^: R ^ — — ^ R p .

If xE Rr ' then ^X) is the number field obtained by adjoin-
ing the values of x to Q. We let ^Q acts on Rp in the natural
way (i.e. by action on values). We define Hom^ (Rp , J(Q)) to be
the subgroup of those /E Horn (Rp , J(Q)) such that f(\^)=f(\)^
for all coE^o and all x ^ R p - We let Hom^(Rp, J(Q)) be
the subgroup of such homomorphisms which take totally positive
values on all symplectic characters of F .

Let x be a character of F which is afforded by a representa-
tion T: r —> GL^ (Q). We let det^ be the abelian character given
by 7 '—^ det (T(7)), for 7 E F . For each rational prime 9. we
extend T to a homomorphism of algebras T r Q g F — ^ M ^ ( Q g ) .
Then, for aEQgF*, we define Det(a)EHom^ (Rp,Q?) to be
the homomorphism given by Det(a) (x) = det(T(a)). (Then we
extend Det(a) to virtual characters of F by Z-linearity).

We let U ( Z D = n Z - r * , Ug(Zr) = n Z.r*. Here the
P • pGS "

first direct product is taken over all rational primes p , and the second
direct product extends over all p in the finite set S . Det then extends
in the natural way to homomorphisms

Det: U(ZF) —^ Hom^(Rp , U(Q)),
Det: Us(ZD —^ Hom^(Rp , Ug(Q)).
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Following Appendix 1.10 of [3], we are now able to give A.
Frohlich's description of Cl(Zr)

Hom^(Rp,J(Q))nrzr) ^ ————"________ (^ \\
^ ) ^ Hom^(Rp,Q*)Det(U(ZF)) v • /

Here we view Hom^ (Rp, Q*) as a sub-group of Horn ^ (Rp , J(Q))
via the diagonal embedding Q* c—> J(Q). Now we consider the
"kernel group" D(ZF) C Cl(Zr), which, for our purposes, we may
regard as being defined by the isomorphism

Hom^(Rp,U(Q))
D(zr) " Hom^(R^©|)Det(U(ZF)) a2)

where 0^ = lim ©^ . For a natural module theoretic interpre-
MCQ

tation of D(ZF) see Appendix II of [3].

Let p be a finite rational prime which is co-prime to the group
order | F |, then Z^F is a maximal order, and so

Det(Z^F*) = Hom^(Rp, U(Q^).

On the other hand, if p is the infinite rational prime, it
follows that by the Hasse-Schilling norm theorem

Det(RF*) = Hom^/R)(Rr - c*)-

Let S now denote the set of (finite) rational prime divisors
of | F |. Then, by the above work and from (2.2), we have

Hom^(Rp,Us(Q))
D(zr) ^ Hom^(Rp,(£)l)Det(Us(ZF)) ' (2J)

We now proceed to describe an element of Hom^ (Rp, Ug(Q))
which represents the class (©g)4 under (2.3).

The fact that (©g) G D(ZF) was first conjectured by J. Martinet,
and was subsequently proved by A. Frohlich (cf. Theorem 11 of
[3]). Because E/F is tame, by Noether's theorem loc cit., 6^ is
a locally free ©pF module. Thus, by weak approximation, we can
choose a E E so that for all C O S

®E ®Z ̂  = a ̂  ®Z ^ •

Let {a^ be a right transversal of ftp^o . We define

A = n ( ^ ^°'7-1). (2.4)
' 7er
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We let /E G Horn (Rp , II Q^) be that homomorphism given by
KGo

(/E(x))fi = [Det(Ag) (x) (rCx)-1^]4 (2.5)

for x G Rr • From Theorem 2 of [3 ], we know that
/E^Hom^(Rr,Us(Q))

and moreover, by (9.4) of [3], /g represents the class of ((S^)4

under (2.3).

Let E be the normal closure of E in Q ; so that Ag ^ 6^ ® Zg .
Indeed, because by hypothesis E/Q is unramified at each C G S ,
from Corollary 2 to Proposition 1.2 of [3], we know that Det(Ag) (x)
is a unit for all xE Rp • Consequently we deduce that for each
e e s

AgG(^ r®Ze)* . (2.6)

We now make certain adjustments to the homomorphism
/E- In [16] we showed that, if E/F is unramified at all C E S ,
then the homomorphism v^ G Hom^ (Rp, Ug(Q)) given by
(^E(X))£ == (N/(x))fi , for £ G S , represents the trivial class under
(2.3). (Here N/(x) is the absolute norm of the Artin conductor
/(X) of x). Trivially then, (O^)4 is also represented by /g^,
and, from definition (7.2) in [10], we see that for all X G Rp » £ G S

(^(X).^)2^ = Det(Ag)(x)4 Mx^NAx)2^
=Det(A,)(x)4 (Wtx)4)^ (2.7)

In section 5 we will show

THEOREM 2. - Let E , F and F be as given in Theorem 1.
Then we can find a number field K so that

(i) K/Q isabelian.
(ii) K/Q is unramified at each £ E S .

(iii) For each prime ^ of F and for each fi G S, there exists
^^(^T^Zfi)* and ^EHom^(Rr,^i) so that

W(X^\ = (^(X))c Det(z^) (x) (2.8)
for all xE Rr • Further, it is immediate that we can choose
^e == Y^ == 1 for almost all ^ .
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Remark. — Despite its rather technical appearance Theorem 2
is very much the heart of the matter !

Now, from (2.7) and the above theorem, we see that (O^)4

is represented by the homomorphism whose E-component is
(n^)gDet(A^n ^e) where the two products are taken over
the primes ^ which are ramified in E/Q. So, because

n^GHom^(Rr, jLi) ,
the class C^g)4 is represented by ^ DetCA4!! ^g), the direct
product being taken over £ G S. For brevity we now put
Bg = A4 n z^ ̂  . By (2.6) and Theorem 2, we know that
BgE(©^r®Z,)* .

However, we also know that Det(Bg) commutes with in-
action. Hence, for cj G ^IQ and x G Rp ,

Det(B^) (x) = [Det(B,) (x^)]^ = Det(B,) (x)

i.e. Det(B^) = Det(Bg).

In Theorem 1 of [17], it is shown that for any number field
L which is unramified at J 2 , if ^ ̂  (©^F ® Zg)* has the property
that Det(x) == Det(x^) for all ^ G Sl^ , then

Det(x)EDet((©L^®Z^)^ Q) = Det(ZgF*).

Thus we have shown that Det(Bg) E Det(Zgr*), and so (©g)4

is represented by an element of n Det(Zgr*). From this we
conclude that ((S^)4 = 1. fies

We now describe the structure of the remainder of this paper.
In section 3 we give various congruences for local grouprings of a
cyclic group. In section 4 we define the local root number and intro-
duce a certain adjusted root number. In section 5 we give the proof
of Theorem 2, and, lastly, in section 6 we prove various lemmas
concerning local root numbers which are stated in section 4.

3. Determinantal congruences.

In this section we describe various higher congruences for group
rings of cyclic groups. These will play a crucial role in the proof of
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Theorem 2 in section 5. However, it is also felt that these relations
are of independent interest, and they could, perhaps, be used to
throw further light on the structure of classgroups of cyclic groups.

Once and for all we fix a prime c\ of E and a rational prime
C dividing | F |. From now on, therefore, we will omit the subscript
q on Tq and A q .

Let T = C^ be the cyclic group of order n. Suppose that
the C-Sylow subgroup of T has order 9V — we denote it by C y .
Then, if n = m ̂  , C^ is the unique subgroup in C^ of order m.

We denote by Zg[^J the ring Zg ®^ ^Q(^) • we have an lso'
morphism of rings ZgC^ ^ ® ZJUC .,. For any number field

S I fH y-

K satisfying property (ii) of Theorem 2, we have the corresponding
isomorphism

©K,C,-©((^®z,Z,[ r jC^) . (3.1)

Here ^Q acts on the ©^ component of each side. We let
R^ be the free abelian group on those abelian characters of C^
whose restriction to C^ have order exactly s . Then, by (3.1),
we have an isomorphism

Hom^(R^,U(Qg)) _^ ^ Hom^(R,,U(Qg))

Det(^C;) ~^ s\m Det(©^ ® ZJ?JC^ '

After a certain stage, by a "faithfulness argument", we shall
be able to concentrate on the special case s = m. So, with this in
mind, we now proceed to study the quotient group

"^^(^uCQg))
Det(©K,®ZJUCp'

Let ^ be an abelian character of C^ , with order exactly s ,
and let ^ be a faithfull abelian character of C y . We define

^=^~1 ^=S:®^ (3.2)

and, for brevity, we will denote ^ ^ by ^.. We remark that for
z E ©K ®Zg[?^]C* Det(z) is completely determined by spe-
cifying the values Det(z) (^.) for 0 < i < v .

Again, for the sake of brevity, we will write 0(mV) for the
ring of integers of K^mC 1 )^ . Let f be the (unique) Frobenius of
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£ in K(^)/Q(T) and let N,/,_i : K(mV) -^ K(mS.1-1) be the
norm map.

Now we shall assume that v > 0. We define homomorphisms

S?_, : Hom^(R,,, U(Q,)) -^ U(Q,)

for 0 < / < v , via

go ^.j^-i^^^^^i)-' f o r / > ! ,
/"1 (N^a,))/^)1-^ for z = 1 ,

where h G Hom^ (R^ , U(Qfi)). More generally, for 0 < / < i < v- 1 ,
we define maps S\_^: Hom^ (R^ , U(Qg)) —> Qg in the follow-
ing inductive manner. We put

s;.,W - (s -̂')- - (s-^)'

for each / > 1 , and then inductively, for i — 1 > j > 2, we put

^-(^-w-
PROPOSITION 1. - Let z € Q(m) C*y . Then, for

0 < / < i - 1 < v - 1 ,

( 1 mod(£) if ; '=0 ,
Sj_i(Det(z))=

( 0 mod(£) if / > 0.

Before proving the proposition we need a lemma.

LEMMA 4. — Let {"g be a primitive Kth root of unity, and let
X,, . . . , X y be £" algebraically independent indeterminates. Then

," (S W) = S x^+ v(Xi,..., x,j
/orrowe /(Xi,...,X^)£Z[Xt,...,X^].

Proof. — We observe that, by the binomial theorem, the expres-
sion on the left is congruent to

S X^ m o d ( l - ^ ) Z [ ? e , X i , . . . , X ^ ] .
/
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However, by Galois theory, the left hand side belongs to
Z [ X i , . . . , X y ] hence the congruence holds mod£Z [ X ^ , . . . , X J ,
which establishes the lemma.

We now proceed with the proof of the proposition. Let C y = < c )
and suppose z = 2 a^ c1 G 0(m) C* with a. ̂  ©(m). In the above
lemma we make the substitution Xy =^•^(c /) . Then, for i> 1,

N,/,_^,(z)) = 2 ^.(c72) 4- £^.(/(^c,...,^)

and similarly

N^(^(z))<po(z) = 2 a] + C^(/(^c,. . . , ̂ ).

So now we define b €E Q(m) C y , by

^=1 (a /^)c/• ^+/(a^c, . ,^) .
/ x

Then it follows that for all i > 1

N^-I^))-^-!^ =^(C&)
and further, when i == 1 ,

N^(^(z))^(^) -<Po(z) f =^i(^).
We now introduce the ring homomorphism

^ / : C(m)C^——> ©(m)C^_i

given by ^(2 rf. c7) = 2 rf. c67 , where dg G ©(m). Now we put
b^ = 1 + K b . (^(z^)"1 . Note that since z is a unit in 6(m) C^ ,
^(z^ is also a unit, and thus ̂  G 1 + e©(m)C^ (here f acts
on ©(m) C y , by fixing the elements of C y ) . It is now immediate
that for all / > 0, S?_^ (Det(z)) = ^(fr^).

Now we define

»<" - (^-1)- - (^-'y
and inductively, for ; > 1 , we put,̂.̂ ; _(^?y.

Then, by an elementary induction argument on 7 , using the
fact that, for i > 0 , <^_^ = .̂ ° ^ , we obtain that
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Sj_i(Det(z))==^(6^),

for all 0 < /' < / — 1 < v . However, by repeated application of
the Binomial theorem we see that b^ E 9.<Q(m) C ^ tor each / ,
and thus the proposition is shown.

LEMMA 5. - Let v > 2 , let z G C(m) C^ , and suppose that
for each ;, 0 < ; - 1 < v - 1 , S^(Det(z)) = 1 ; then

S;^(Det(z))G 1 + C(l - ̂ ) ©(^-1).

Proof. - From Proposition 1, we know that
S^_i(Det(z))= 1 4 -»a ,

for some a G © ( ^ C - 1 ) . To each prime S, of K(nK~1) which lies
above C , we associate the standard (additive) valuation v^ (such
that i/, maps K(^C-1) onto Z). From the definition of S^ ,
and using the fact that S°_i(Det(z)) = 1 for ; - 1 < v - 1 ," we
obtain that for v > 1

S^(Det(z)) = c^ . C-K6'"1-1)^-1)"1-1! .

Whilst by Proposition 1, we know that S^(Det(z)) == 0 mod(e),
and hence, for each i , K"-1. v^a) > ̂ .(1 - ̂ g) (C17-1 - 1).

Now suppose, for a contradiction, that a^ ( l — ?g) ©(^C"1).
Then for some i, v^(a) < ^.(1 - ^g) - 1 ,

i.e. ^-^.(a) < ^-^^.d - ̂ ) - 6^(1 - ̂ ),
<(el;-l - 1)^(1 -?,).

Thus we obtain a contradiction, and so the lemma is shown.

LEMMA 6. - For i > 1 ,

N^-id + (\ - ̂ ) e(mV)) = 1 + j ^ ( l - ^ ) ( c ) ( m £ J - l ) .

Proof. — Let (^, i// denote the Herbrand functions of the ex-
tension K^m^VK^mC1"1), let t denote the so-called "jump
number" for this extension, and let v be the standard valuation
attached to some prime of K(m£1) which lies above C (cf. page 91
of [12] for details). We know that t = v{(\ - ?g) (1 - ?^)~1),
(p(t) = t = ^(0, and so the lemma follows immediately from Co-
rollary 3 on page 93 of [ 12].
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4. Local root numbers.

In this section we first define the local root number (following
the treatment given by Tate in [16]). We then define an adjusted
local root number and establish certain basic results for it. Then,
at the end of this section, we cite six lemmas, whose proof will be
given in section 6.

Throughout the remainder of this paper we shall refer to finite
extensions of Qp (resp. of R) as non-Archimedean fields (resp.
as Archimedean fields).

Let Eg/K be an arbitrary Galois extension of Archimedean
or non-Archimedean fields with Gal(Eq/R) = A . Langlands, and
later Deligne in [2], showed that for each Galois group A there
exists a unique homomorphism, called the local root number,
W^ : R^ —^ Q* , with the property that

(i) Let A C A and suppose X ^ R A with \(\) = 0, i.e.
X is of degree zero, then

W^(Ind^(x)) = W ^ ( x ) .
(ii) Suppose restriction of automorphism induces a surjection

of Galois groups A —^ ^2 , and let x e Rn , then
W^( In f^ (x ) )=W^(x ) .

(iii) Let x be an abelian character of A , and suppose

(a) F^ is Archimedean
Then W^(x) = = 1 if F^ is complex,

1 if F^ is real, x trivial,

— i if F^ is real, x non-trivial.

(Here i is the square root of — 1).

w^(x)=

(b) Fc. is non-Archimedean
Let o (resp. p ) be the maximal ideal of the ring of integers

of Eq (resp. Fh) . We denote the different of Fc, by Dp , and
we choose cGF^ so that cOp = Dp /(x)- We let \l^y be the
canonical additive character of F^ , given by the composite
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^F /Q

^ ———^ Qp —> W—^ Q/2 —" R -^-^ c*
(Note that for A C A , we shall frequently write ^ in place of
i// ^ , the canonical additive character of E^).

If x is unramified, we set W^(x) = x(Dp ).

If X is genuinely ramified, we set

w^(x) = NAx)-172 S xt^c) ^(^c-1).
MGO * mod/(x)

'P
(We view x as a character of F? , via composition with the local
Artin map, in the usual way).

We remark that W^(x) is then defined for all virtual characters
X by Brauer's induction theorem (cf. Example 2, page 96 [13]).

Globalisation. — Suppose E/F is a Galois extension of number
fields, with F = Gal(E/F). Let ^ be a prime of F and let q be a
prime of E above ^ . If x E Rp » X yields a character of the decom-
position group Gal(E^). We put W(x^) = W^/xL, ) (which
is defined by the above work). Then we have that W(x) = II W(x^)
where W(x) is the Artin root number of x? and where the product
extends over all primes of F .

We now define an "adjusted" local root number W*. (W* is
in many ways similar to the adjusted root number e^ introduced
in (5.1) of [2]. First though, we state without proof the following
elementary result:

LEMMA 7. — Let Eq/F^ be a tame Galois extension of non-
Archimedean fields, then q DE = t>Dp ©E^ •

From now on we will always assume the extension Eq/F^ to
be both tame and Galois. We fix c € F^ so that cOp = - p D p .
For each subgroup 2 of A , we define y^ E Hom^ (R^, p.), by
stipulating that for each irreducible character <p of 2

( — <^(D s)~1 if ^ unramified,
^(^)= _11 (4.1)

\ det (c ) otherwise.

Remark. — y^ is closely related to the non-ramified charac-
teristic homomorphism introduced in [7].
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For each 2 C A , we define

W^(^)=^(<p)W^(^) (4.2)

for <^G R^ , where W^(</?) is the local root number of <^?, defined
previously. Frequently, when there is no danger of confusion, the
subscript 2 will be omitted on W and W*. The crucial property
of W* is:

LEMMA 8. - Let v be an unramified abelian character of A,
then, for each X e RA . ^(x) = W*(^x).

Proof. - From page 115 of [14], we derive that

W(^x) = W(^(1) W(x) ^(/(X)).
Now, if x is irreducible and genuinely ramified,

W(^x) = WW^ W(x) vW^ = ̂ (x - ^X) W(x)

as is required. On the other hand, if x is irreducible and unramified,
then the result is immediate.

Now let a be an abelian character of the inertia group T, and
let Xa ^e ^y irreducible character of A which occurs in Ind^ (a).
Such irreducible characters differ only by a multiple of an unramified
abelian character. So from Lemma 8, W*(x^) depends only on a ,
and not on the particular choice of x^ •

For the sake of clarity it will be convenient to introduce the
following notation. With the terminology of (3.2), we shall write
W*(x^) (resp. W*(x,)) in place of W*(x^,,) (resp. W*(x^,)).

Because both T and Ker(a) are normal in A , and because
by our hypotheses on K , K H Q ( a ) = Q , conjugation induces a
homomorphism of groups p^: Ayy(= S, say) —> Gal(K(a)/K) given
by (c^c)/^ = ^(S-1^), for c E T , 5 G A . We will denote
the kernel of the composite homomorphism A —> 2 —> Gal(K(a)/K)
by H^ , and we put 2^ = A/H^. Equivalently

H^ = Ker(A —> Aut(T/Ker(a))).

This interchange between local Galois groups and "cyclotomic"
Galois groups will be absolutely crucial in the sequel.
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(4.3) From now on we shall view 2^ as a sub-group of Gal(K(a)/K).
Again, for the sake of brevity, it will be convenient to write 2^ ^ , H, ̂  ,
2^,H^. in place of 2^ ., H^ . , 2 ^ . , H ^ . , respectively.

For a finite abelian group G, we denote the E-Sylow sub-group
of G by Gg , and we let G' be the unique direct complement of
Gg in G.

(4.4) We write A,̂ . = K(S^), A , = K ( S , ) , and we let B,, (resp.
B^.) be the sub fie Id of A^ ^ (resp. A,.) which is fixed by 2 .̂ (resp.
by 2^.). Then by use of Mackey's restriction formula (cf. 7.3 of
[13]), we obtain that B^=A^r '= K(X, , , IT) .
(4.6) The inertia group of the primes above £ in the extension
A,/B^ is easily calculated from the action of 2^. on T. To be more
precise, the inertia sub-group of 2^. is made up of those elements
which act trivially on T'.

For the remainder of this section K satisfies conditions (i)
and (ii) of Theorem 2 and also we assume that K D Q(p).

LEMMA 9. - W*(x,,) is a unit in the integers of (B^ ̂ , and
further, for c^G^^ W*(x^,)2 = W^,)2" .

Proof. — We know that x , == Ind^ .(^ ^.), for some abelian
character ^- , which extends ^ ,. From the inductivity of local

S, I "> • V

root numbers in degree zero we deduce that W^(x, ,)2 = WH .(^\)2
V ' s! l '

for each 7 G A , where ^J ^ is the abelian character obtained by com-
posing ^ ^ with conjugation by 7 . Hence, for all a G 2 .̂

X(Dp )2 if x is unramified ,

w(xs)l) ~ NAx^r1^ i,i (^-l)^,(^~l))2(7fe.•(^) otherwise.^,^ \^ ('^^1^ >' ^H •'<— // ^s,
u

Here the sum extends over a set of representatives of the units of
E^511 modulo c^nE^ 1 . Note that because ^J^, = ^,/, it follows
that the ^,(^)G^,(T).

Now, in the unramified case W*(x^ /)2 = 1 , whilst in the remain-
ing case, by local class field theory,

^(X)2 = det^(c)-2 = V^ .^,(c-2) = ̂ .(c-2).
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Thus, by the above, we see that W*(x^,)2 ^ Q(p, ̂ ,)^1,
which, by (4.5), is a subfield of B ^ , .

Further, it is clear from the above that for a; E ^Q/,,) »

W(X^,)2 = W(^.)2 = W(^,)2- = W(x^)2" ,

whilst y^(X^f) = y^(Xs,i)^, because y^ commutes with ^IQ
action. So indeed we obtain the equation W*(x^-)2 = W*(x^ ̂  .

Finally, we must show that W*(Xy, ) is an C-unit. However,
by the above work N/(x^-) W(x^-)2 is an algebraic integer, whilst
from Proposition 4.1 of [10], we know that N/(\y,.) W(x, ^.)2 divides
N/(x, ,)2 which, in turn, is an C-unit, since all prime divisors of the
group order of F are unramified in E/F .

In the remainder of this section, we state various results which
relate W*(x,+i) and W*(x/). First though, we must introduce
further notation.

For ; > 0 , the surjection of Galois groups
Gal(A,/K) —^ Gal(A,_i/K)

induces a surjection 2, —^ ̂ i-\ ' We put q =Card(Ker(2^ —> ̂ o)),

if C ^ 2 , r = Sup {i> 1 | K e r ( 2 , — ^ 2 i ) = { l } ,

if £ = 2 , u = Sup [i> 1 | |Ker(2,—> 2i)| < 2}.

Because Ker(£^——> So) is a subgroup of the automorphism
group of the 6th roots of unity, we see that q \ £ - 1 , and so, in
particular ( q , C) = 1 . Further, we see that if C ̂  2 , then r is
the largest integer so that 2^ acts tamely at £. (As far as I know
the integer u has no such neat interpretation).

The following result is an elementary exercise in the theory
of automorphisms of cyclic groups — consequently we shall omit
the proof.

LEMMA 10. —

(i) Let 9. ̂  2 and suppose 9. \ (H^ : H,) (i.e. / > r), then
for all k > i , (H^:H^ = £.

(ii) Let £ = 2 and suppose 41 (H() : H^) (i.e. i> u), then
for all k>i, (H^_i:H^) = 2.
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Recall that f ^ ^Q has the property that its restriction to K(|T'|)
is the Frobenius for the primes above £ , whilst the restriction to
Q(|TJ) is trivial.

LEMMA 1 1 . —

(i) Let £ ̂  2, then W*(Xi)2 = W^x^ mod ̂  and

NB,/B,(W*(Xi)4) = W^x,)4^-0 .

(ii) Let £ = 2, r/z^ W*(Xi)2 = W*(Xo)2 mod^ ^

W*(Xi)4 = W^Xo)4^-0 .

LEMMA 12. -

(i) Let 9. ̂  2 a^rf suppose r > / > 1 , r/z^z

N,/,-l(W*(x,)4)=W*(x,-l)4f

(ii) £^ C = 2, let i > 1 OTIC? suppose that H,_^ = H, , ^^
N,/,_,(W*(x,)4)=W*(x^)4 f ,

and further, if (H^ : H,) > 1 , then
^/^(W^^W^x,.^.

LEMMA 13. —

(i) Let 9.1=2 and suppose i>r, then W*(x,)4 =W*(x,_l) 4 f .

(ii) Let £ = 2 and suppose (H,_i: H,) = 2, ^/^
w^x^^w^x,^)4'.

LEMMA 14. — Z^ $ C ̂  C A , suppose that $ ^ normal in
^ with ^/$ abelian, and let ^ E R^.

(i) If the ramification index in E^/E^ is odd, then
W*(Ind^))2 = W*(<^)2 .

(ii) // (^ : $) = 2 ay2d z/ E^/E^ ^ rorfl/fy ramified, then

NP-l / .
W*(Ind^))2 = (- 1) 2 ' --W*^)2

where P f5 ^A^ maximal ideal of the ring of integers of E^ .
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LEMMA 15 (Hasse-Davenport). - Let $ C ^ C A , let
^ n T = ^ n T

anrf /^ ^ be an abelian character of ^, then
W*^)2^0) =W*(^)2.

For the statement of the last in our series of lemmas, we suppose
that v = r if £ ^ 2 and that v = u if 9. = 2 (where |Tg| = ^
as per the notation of section 3). We let M be the subfield of E
fixed by H^, . Because ^ is faithful on T and because A is meta-
cyclic, we know that E^/M is an abelian extension.

Let ( — , E^/M) be the Artin symbol attached to the extension
E^/M. We define T, T E Z [ ^ ] T by

T = ^ (^E^/M)^^"1)
u

T- S (y-^Eq/M)^-^-1)
U

where both sums extend over a set of representatives of (9^ mod p0^.

LEMMA 16. - With notation as above, let P E R^ and let
a E Rp^ , ^M

Det(TT-1) (j8) = W*^)2^0^ ,
Det(TT- l)(a)=W*(a)2 .

Lemmas 11 to 16 will be proved in section 6.

5. Proof of theorem 2.

We keep the notation of previous sections. We shall consider
number fields K such that
(5.1 a) K/Q is abelian and unramified at primes in S .

(5.1b) K3Q(p) , for all primes p which ramify in E/F.

(5.1c) The residue classfields of K at primes J2E S are "big enough"
(in a sense which will be made more precise later).

For the existence of such fields K satisfying (5.1c) cf. § 2,
Ch.Xof[9] .
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As previous £ is a chosen prime in S, and p is a fixed prime
of F. We now state a theorem which we will firstly show implies
Theorem 2, and then we will prove that theorem.

THEOREM 3. - We can find a number field K (as in ( 5 . 1 ) ) and
homomorphisms t^ G Hom^ (Ry,U(Qg)) for each s\m, ^ith
the property that

(1) For each i, 0 < / < i ? , and for all s\m

NA^./B,/^,,)) = ^(X,,,)4^.
(2) For 1 < i

N^-iO^U)^^,,-^,

and ^w(t(s\^l))=t(s)^,o)i~l •

(3) r<^eDet(©^®Z[?JCp.

Now, because R^, a © R^, we may view
s\m

®^GHom^(RT,U(Q,)) .
We put g = C ̂ ) .

PROPOSITION 2. - If g is as given by Theorem 3, then for X E RA
Ind^O?) (x) (= gW) = (W^x)4^ .

Proof. — By Z-linearity it is sufficient to show that for each
pair ( s , 0, IndfQO (x,,,) == (W^x^.)4^ .

Now,
Ind^(g) (X^)==^(X^IT)

by Mackey's restriction theorem,

=^ S ^)
°^5,i

since ^ commutes with S2^ action,

= NA^/B,/^(^.•))

by definition of g
= N. /a (^^a /))A5,( /B^,t ^j,/77

by (1) = (W*(x, ,)4^ .



30 MJ. TAYLOR

Now we show that Theorem 3 implies Theorem 2. By part
(3) of Theorem 3 we may suppose that t^ = Det(z ), for
z s e ^Kc ®Z[?JC^ . We suppose that under the isomorphism
(3.1), Zp^ i—> ® z , . Then, by Proposition 2, for ^ E R^ ,

(W*(^)4), = Ind^) (^) == ̂ (^) == Det(z^) (^)
=Det(z^)(^) .

However, for x^ Rp , (WCx^ = (WCxl^)4^ ,

-(^(xl^.W^)4),,
=(Ind^)(x))cDet(z^)(x),

and so, if we write y = Ind^(^) we obtain Theorem 2.

Remark. - In the above proof that Theorem 3 implies Theorem
2, it is not apparent why we impose condition (2) on the t ' s . In
fact, this condition will play a crucial role when we use an induction
argument to demonstrate the existence of the r-homomorphisms.

Now we set out to prove Theorem 3. By factoring out in A
by subgroups of T and by arguing by induction on | A [ , we may
assume that t^ exists in Theorem 3 for all s \m, s ^ m. So now
we have to produce t^ . For brevity, we write t in place of
^ ( w ) . Moreover, because Theorem 3 is easily seen to be trivial if
v = 0, we may assume v > 1 . (For, if v == 0, we need only
find xEUg(A^) so that N^^^(x) = (W^Xo)4^, and then
P^t ^(^o) '=: x ' The existence of such an x is clear because A^ o/By o
is unramified at C).

Let eg be the unique subgroup of T with order £. Then,
by considering the quotient group A/Cg and by arguing inductively
on the group order of A , we may, if we wish, assume that we have
values t^o),...,t(^) which satisfy properties (1) and (2) for
i < v and so that for some w G © ^ ® Z[^J (C^/Cg)*

t(^) = Det(w) a,)

for all i < v , where we view S, as a character of T/Cg in the natural
way. Equivalently we can assume the existence of z~E e(m) (C y/Cg)*,
so that ra,)=^(7). fi

For any jcEUCQg) , we can write x uniquely in the form
x = ^(i)^(c), where x^ = 1 mod^g and where x^ is of finite
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order prime to 6. For t £ Hom^ (R^, U(Qg)) we have the cor-
K.

responding decomposition t = ^(D^C) . For brevity we will write
Wfo (resp. W^) in place of (Wg*)̂  (resp. (Wg*)^). (As usual
W^ is the projection of the adjusted local root number homo-
morphism into U(Qg)).

The proof of Theorem 3 for the prime £ = 2, whilst in many
ways parallel to the case when £ is odd, is sufficiently singular to
warrant special treatment. So, first we prove Theorem 3 when
£ =7^= 2 and then, afterwards, we deal with the case £ = 2 .

Proof of Theorem 3 when £ ̂  2. —
Step 1. In this first step, we establish the existence of the homomor-
phism t^ required for Theorem 3.

Since AQ = K(m), from (5.1c) we know that (\\/(BQ\ is
completely split, and so we have an isomomorphism of rings

(Ao)^n(B^ (5.2)

where we view (B^g as being diagonally embedded in the right hand
side. By Lemma 9 W*(^o)2 E Bg, and so, for each a? GE 0^ and
each ;, 0 < i < v , we define ^i)(^)E (Ao)g , so that under
(5.2) r^(^) ̂  (W^(Xo)4 x 1 ... x ir .

Note that if ^ = ^, then a? fixes the whole of A,(= K(^,))
and hence a? fixes the subfield A() . This then shows that each
t(i)(^) is well-defined, and that t^(^) = t^)^ tor coES^.

We must now show that t.^ satisfies the corresponding pro-
perties to (1), (2) and (3). Namely we must show:

For each i , 0 < i < v

NA,/B,(W^)) = (^i/X^ . (1)
For 1 < i

^(W^W^-i)'' (2)
and N^(^a,)) = t^y-1 .

^EDet((S)K,®Z[?JC^). (3)

It is immediate from our definition of ^ above that
t^ = Det(^(^)). (By Lemma 9, t^(^) C ©^^ and so we



32 MJ. TAYLOR

view ^D^Det^K^ZtU*) as explained at the beginning of
section 3). Now we must establish properties (1) and (2).

If ; == 1 , we have a diagram of fields

Recall that q = (H^ : H^) and so

NA,/B/^i)ai))=N^^(^/^)^
= (W(*o(Xo)4^

by Lemma 11 (i) = (W^(x^ .

Lastly, it is immediate that, since ^i)(^) = ^i)(?o)»

^/A^iA)) = t^W-1 = ̂ (i)^-1 .

So now, we suppose that i> 1 . By using Lemma 10, we see
that, according as v > r , or, v = r , (H,_i: H,) = £ , or, H^_^ = H,.
Thus we have a diagram of fields

If H, = H,^ // (H,_,: H,) = C

A,

A

2i-i

^•-i

B.-B,^

Nf/,-i(/(i)(^)) = ^a-)6 = /(^(^ = t^^.
Hence, property (2) is established.
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Inductively, we may suppose that

W(*i)(X,-i)4 = N^B,_/W^-i))-
Since t^,) = t^_,), W^(x,_i)4 = N^,0(1)0,-)).

However, from Lemma 12 (i), we deduce that

W^X.-^N^W^x,)4),
and so, by the total ramification of £ in A,./A,_( ,

=w^(x,)4s=w^(x<)4f.
Hence, we see that W(*i)(x,) = W(*i)(x,_i), and we obtain that

NA,/B,O(IA-))-W^x,)4 .
This now establishes property (1).

// (H,^: H,) = £
That property (2) holds is proved in exactly the same way as

above. To verify property (1) we may suppose, inductively, that

W^CX^^^N^.^^^^^,^)).

From the diagram of fields, using the fact that t^(^) = ^i)(^-i),
we have NA,/B,(/(O(^)) = ̂ .,^,_,(t(^.-^

=^^-^
by Lemma 13 (i) = W^/x,)4.
This now completes step 1.
Step 2. In this step of the proof of Theorem 3, we establish the
existence of homomorphism t,^ , for the special case when v = r .
So now we want to define t^(^), for 0 < i < v, so that

NA./B/C^O-)) = W^(x,)4 (1)

N(/,_ lOoyO,)) = t^,.t)1 for />! , (2)

and N^O^))^)^"1.

^GDet(©^®Z[?JC^). (3)

We remark that (3) automatically implies that r^ commutes
with ft^ action.
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Recall that ©(m) denotes the integers of K(m)g. We now
make certain observations concerning the group ring 6 ( m ) C ^ .
For any z e e ( m ) C ^ , we can write z uniquely in the form
z = z ( l ) Z W 9 where z^ has finite order prime to C , and z/g.
lies in the pro-C-Sylow subgroup of 0(m)C^ . Because ^(==(Ho:H^))
is prime to C , raising to the q^ power yields an automorphism
of this pro-C-Sylow subgroup. We will denote the inverse of this
automorphism by z \—> z q ~ l .

The ring isomorphism (A^g ^ n (B^g of (5.2) induces an
isomorphism

(Ao)fiC^-II(B,),C^ . (5.3)

Here, as usual, we regard (B^C^ as being diagonally embedded
in the right hand side. Suppose that under the composite homo-
morphism

K,T -^ (\\C^ -^ n(Bo),C^ (5.4)

(TT-1)^"1——> s —^n^.,

where T , T are the elements given in Lemma 16 of section 4, and
where we write (TT"1)^' in place of ((TT"1)^. Recall that
^ is a faithful abelian character of T' = C^ , that ^^ is a certain
abelian character of order V on Tg = C „ , and .̂ = Sm ® ^i (cf-
section 3).

v

For each ;, we let .̂ denote an abelian character of H .̂ which
extends the character .̂ of T. Then

^(s) = S,((TT-1)^-1) = S,|H/(TT-1)^-1),

by Lemma 16 = W^a,^)4^"1 .

Next, observe that by Lemma 15
w* (f \4 - 117* /? ^("^"u)
^(fi)^!!^) - ^(fi)^)

by Lemma 14 == W^/x,)4^'^ .

Moreover, since we know v = r, Hy = H ^ , and thus we have
now shown

( W^(Xo)4 if i = 0 ,
^(s) = * . -i (5-5)(W(*,)(x,)^ if ; > 0 .
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Originally, all we could say was that ^(A^gCy.
have now shown that ^-(.y) ̂  B^C^g for all / , 0 < i < u (since
by Lemma 9, W*(x,)2 ^ B, C B^C1')). So we can deduce that in
fact 5e(Bo)gC^ (cf. 1.5 of [17]). This then implies that, in (5.4),
the s^ are all equal. For a? € ̂ , we define t^(^) in (A^.)g ,
so that under the isomorphism induced by (5.3)

* . However, we

( ^ )x l . . . x l ) .w^) (5.6)
* ^It then follows immediately that ^)^Det(©K ®z[?w]ce^?

and so property (3) holds.
Now we consider NA./B.(^(fi)($i))» in order to establish property

(1). We let G, be the sub field of A, fixed by the Galois group
HQ/H,.(C 2^.). Because v == r , we know that Hy = H ^ , and so
we obtain a diagram of fields

In particular £ is totally ramified in A,/G, and, by (5.1c), £ is
completely split in G^./B^.. Thus, with abuse of notation,

NA,/B,(W^)) = ̂ ,^N^,(^1)) x 1 ... x 1) = N^.(^(^)).

However, by (5.5) and using the fact that, from Lemma 9,
W^x^^B,, we deduce N^.O^)) = W^(x,)4, for all f ,
0 < / < v . This then establishes property (2).

We now consider property (1). From (5.5) and (5.6) we obtain

W^tXo)^!. .^! if ^ = = 0 ,w^)=
.-iW^CX,)4^ x l . . . x l if , > 0 .

(5.7)
^fi)^,
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Suppose first that i = 1 . Then, by Lemma 11 (i),

NB^(W(*,)(Xl)4)=W^(Xo)4<f- l)

so that
Ni/oCW^/X^^^W^/Xo)4 9^-0 .

Hence, by (5.7), N^(r^(^)) = r^a^-1 .

So now we suppose that i > 1 . Again from Lemma 12 (i)

N^l(W^(x,)4)=W^(x,_,)^,
and so by (5.7)

N,/,_i(^0,)) = ̂ O^
which completes step 2.

5^p .?. In this, the last step in the proof of Theorem 3, we establish
the existence of the homomorphism t.^ , for the case when v > r .

As explained earlier, we may assume inductively that

W^))^-- ' W^-i)
are already defined and that there exists ~2"^©K(m) (c u/Cg)* so
that ^0,) ==^,00. We must find ^(^) such thtit (1) and (2)
hold at i = v , and so that (3) holds. As previous, we know we have
a diagram of fields

\

\-i

B.-i = B, .

(5.8) First we show that if property (2) holds for ; = v , then,
necessarily, property (1) must hold for i = v . Clearly

NA,/B/W^)) = NA,_,/B,_/N,/,_,(^(^)))

further, as property (2) holds by hypothesis,

= ^/B^/W^-i)')
by our induction hypothesis

= W^x.-i)4'
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from Lemma 13 (i) = W^(Xu)
as is required.

By enlarging K if necessary (preserving (5. la) and (5.1b)),
it is clear that we can find x G (Ay)g so that

N./.-iOO^A-i)'- (S-9)

Our aim is to find such an x with the additional property that
there exists z E (9(w) C* so that

z ^7 under ©(m)C^ -^ ©(m) (C^/Cg)* , (5.10a)

^ ( z ) = x . (5.10b)

(For then we can set t^(^) = x and we are done).
Using the results of section 3, we now find such an x . We pick

any z G ®(m) C* so that z l—> z , under the quotient homo-
morphism. We know from property (2) of t.^ that

^(W == 1 fora11 ^ < ^ (5.11)
consequently, by (5.10a),

S?_i(Det(z)) = 1 for all f < v . (5.12)

Thus, as v > r > 1 , from Lemma 5 of section 3 we have

S^(Det(z))Gl +j^( l -^)(£)(mj^ l ; - l ) . (5.13)

So, from (5.10a) and (5.9)

S,°_,(Det(z)) = S,o_,(Det(z)).N,/,_,(x)-l^a,_l)f

= ̂ /^.(^(zM.^^zr^N^,^-1). ̂ (^-i)'
-^/^(^(^x-1).

Whence, by (5.13), we obtain that

N^-iC^OO^-1)^! + C(l -^©(me^-1).
However, by Lemma 6 of section 3, we see that, after multiplying
x by an element of Ker(N^_^) (which, of course, still preserves
(5.9)), we may assume that <^(z)x-1 G 1 + (1 - ̂ ) ©(mC"). So
now, if c generates C y , we may choose

z ' e i + o - c^mmx^,
so that <^,(z') = <^,(z~1)^.



38 MJ. TAYLOR

Then, trivially, ^.(z') = 1 , for all i < v , and so we obtain

( x if z = v ,^w =
( t^,) if z < i ; .

It is now immediate that if, for c^E^, we put W^) = x^
then ^Det((^®Z[?JCp. Further, by (5.9), ^satisfies
property (2), and whence, by (5.8), also property (1). This then
completes our proof of Theorem 3 when £ ^ 2.

Proof of Theorem 3 when S. = 2 . -
Step 7. Again, in this the first step, we establish the existence
of the homomorphism r^. As for the case C ^ 2 , we define
^i)(^)^(Ao)2 for all ;, 0 < ; < v , so that under the isomor-
phism (5.2), ^(^) ̂  (W^(x^)4 x 1 . . . x 1)- .

As before, we are required to show that t^ satisfies properties
(1), (2) and (3). The proof that they are satisfied is entirely analagous
to the case C ^ 2 , and so is omitted.

Step. 2. In this step we establish the existence of t^. when v = u.
The proof for this case is in someways similar to step 2 when £ ^ 2.
We recall that our aim is to find t^ so that (1), (2) and (3) hold
(as listed in step (2) when S. ̂  2).

We define 6 = 2 (H^: H,)-1 (>!!). We suppose that under
the composite homomorphism

(5.13) K,T ̂  (A,),C^ —. n(Bo),C^
(TT-%) -^s -^ns,.
Here T, T are the elements given in Lemma 16 and we write
(TT-1)^ in place of ((TT-1),)^.

v

Again, ^ denotes an abelian character of H .̂ which extends
^. Then

^,(S) = $,((TT-1)^) = ^((TT-1)^)
which by Lemma 16

=w?2)a,•|H„)26

and from Lemma 15

•̂m,,)2 = w^a,)2^'^.
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So, by Lemma 14, we obtain

w*(^)2 = w^x,)4^0^"1.
Thus we have shown that
(5.14) ^,(S) = W^x^"0^"1 .

Originally we only knew that S CE (A^) C*y, but now we have
shown that ^?,(S) G (B^^ for all ;, 0 < i < i; (since, by Lemma
9, W^x^^B^CB^')). Thus we may deduce that in fact
SE(Bo)2C^ (cf. [17]), and consequently, in (5.13), all the Sy are
equal.

For C J ^ ^ K ? we define ^)(^)E (A^2 ? so that under the
isomorphism induced by (5.13),

(5.15) ^)(^)=(^-(S)x l . . . x i r .

It is immediate that r^^Det^ ®Z[?JC^), so that pro-
perty (3) holds. Now we consider N^./g.(^)(^))» m order to
establish property (1).

Let G .̂ be the subfield of A .̂ which is fixed by the Galois
group Ho/H^. Then G .̂ is the maximal subextension of A^., contain-
ing B,, which is unramified at £ , and we have a diagram of fields

With abuse of notation we have,

NA,/B,(W^)) = NG,/B,(N^./G/^.(S)) x 1 . . . x 1)

= N^./G,(^(S))
by (5.14) =w^(x,)4 ,

since, by Lemma 9, W*(x,)2 ^ B,.
This establishes property (1). We now show property (2). Suppose

first that ; = 1 . Then, because a cyclic group of order two has trivial



40 M.J. TAYLOR

automorphism group, H() == H^ , and so from Lemma 11 (h),

W(*,)(X,)4 = W^Xo)4^-0 .

By (5.14) and (5.15) we obtain t^(^) = t^(^~1, as is required.

Secondly, we suppose that i> 1 and that H .̂ = H,_i . Then,
from Lemma 12 (ii), N,/,^(W^(x,)4) = W^x.-i)^ ." Further,
by the same lemma, we know that if (H() : H^.) > 1 (i.e. if (H^ : H,) = 2
since by hypothesis v = u), then N^_^(W^(x,)2) = W^x/.i)^ .

Thus, by (5.14) and (5.15), we see that, regardless of whether
H o = H , , or, ( H o : H , ) = 2 , N,/,_,(^)a,))=^)(^-l) f as is
required.

Lastly, we suppose that (H^ : H^.) = 2. From Lemma 13 (ii)

(5.16) W^(x,) 4=W^(x,_, ) 4 f ,

and so, by (5.14) and (5.15), using the fact that (H() : H^.) = 2 ,

N,/,_,(^0,)) = N,/,_,(W,*(x,)2 x 1 . . . x 1).

However, as (H,_i: H,) = 2 , it is clear that B^. = B^ , and
so, by Lemma 9 ,

N^-i^A)) = (W(*2)(X.•)4 x 1 ... x 1)

by (5.16) == (W^/Xy-i)4^ l . . . x l ) .

Moreover, because v == u, we must have that (Ho:H^_i) = 1 and
so, by (5.14) and (5.15), we obtain N^._,(^(^.)) = ̂ A-^ •

This now establishes property (2) and so completes our proof
of step (2).

Step 3. In this the last step we are required to establish the existence
of t^ when v > u. The proof is exactly the same as in step (3)
for the case when C is odd, and so the details are omitted.

6. Proofs of Lemmas.

In this section we give proofs of Lemmas 11 to 16. We start
by proving Lemma 14.
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Proof of Lemma 14. — By the transitivity of induction, we can,
without loss of generality, assume that (^ : $) is a prime number,
and by linearity we can assume that </? is irreducible. From the in-
ductivity of local root numbers on degree zero virtual characters,
we derive that W(Ind^)) Wtp^)-^0 = W(<^), where p^
is the regular character of the quotient group ^/$ inflated to ^ .

In case (i) of the lemma, by pairing conjugate characters, we
may deduce that W(p^;<^) is ± 1 (cf. Corollary 1 to Theorem 1
in [14]).

In case (ii), we let a be the unique ramified abelian character
of E^/E^;. Then W(p^)== W(a), and from Corollary 1 to

q ' ' NP-l
Theorem 1 in [14] W(a)2 = a(- 1) = (- 1) 2 .

So now it is sufficient to show that when (^ : $) is prime
and $ is normal in ^, ^^(Ind^(^))2 = y^)2 . We prove this
result by considering the possible different cases.

Let D^ (resp. D^>) denote the different of E^ (resp. E^)
and let P (resp. Q) be the maximal ideal of the ring of integers
o f E ^ (resp. E^).

1) Suppose ^p is genuinely ramified. — Then, as all the irreducible
characters in Ind^(^) are genuinely ramified, we obtain

^(Ind^))2 = det(Ind^)) (c2),

=V^(c2),

by local class field theory = ^(c2) = y^)2 .

2) Suppose (R is unramified with E^/E^ unramified. — Then all
the irreducible characters occuring in Ind^(^) are unramified and so

^(Ind^))2 = det(Ind^)) (D^)2 = V^(D^)2 ,

by local class field theory = ^(D<^)2 = y^)2 .

3) Suppose (^ is unramified with E^/E^ totally ramified. - Let
(/?' be the unique unramified abelian character of ^ which extends
^ p . First we consider the decomposition of the character Ind^(e^).
We may write Ind^(e^) = e^ + ^ n,^. with the .̂ distinct irre-

ducible characters and with n. > 0. By Frobenius reciprocity,
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(e^ , Ind^(e^)) = 1 , so that 6^ ^ e^ for each i. However, by
Mackey's restriction theorem, Ind^e^ is just the regular
character of the unique quotient of T with order £ . Hence, all
the ^, are genuinely ramified. By a further application of Frobenius
reciprocity we have Ind^(^) = ^. Ind^(e^) = ̂  4- 2 n^ . 6^ and,
as ^ is unramified and abelian, the < .̂ are all genuinely ramified
and irreducible. Thus,

y(lnd^))2 = ^'(D^)2 n de.t^(c2)

^^(D.^det^^^2).^^-)

=^'(P)-2V^(c2).

But, by local class field theory, V^(c2) = ^(c2) and <^(P) = ^
(Norm P) = ^(Q), (since ^\^ == <^). Thus we obtain

^(Ind^))2 = ^(cQ-1)2 = ^(D^)2 = y(^)2

as we require.

Pwo/ of Lemma 15. - We follow the proof given in § 5 of
[2]. By Lemma 14, we know that W*(V/[^)2 = W*(Ind^(^))2 .
However, Ind^(^) splits up into a sum of (^: $) distinct
abelian characters, all of which differ from ^ only by a multiple of
an unramified abelian character. The result then follows by Lemma 8.

LEMMA 17. - Let ^ be the abelian character of T defined
previously. Let $ C ̂  C A with Q& : $) = 9. and with E°/E^
totally ramified. Suppose that ^^^ extends to an abelian cha-
racter X, of $. Then, if i > l , ^-^^ extends to an abelian
character ^_, of ^ (resp. if i =0, then ^^ extends to an
abelian character JLI_^ of ^) and W*(X,)2 = W^JLI^)^ .

Proof. - We may suppose that X, is ramified, otherwise the
result is immediate. Let Q (resp. P) be the maximal ideal of the
ring of integers of E^ (resp. E^). Then

W*(\.) = NQ-1/2 2\.(^ ^(^c-1)

where u is summed through the units of E0 mod Q. However,
as E^/E^ is totally ramified, we can choose u to be a set of re-
presentatives of the units of E^ mod P. So, by local class field theory ,
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W*(X,)2 = NP-^SV^X^) ^(J^c-1))2

=NP-l(2V^X!-^)^c-l))2f

=W*(Ot-l)2f.

So, it is sufficient to show that ̂  and V^X^"1 agree on T H ̂  .
For brevity, we put ^ ' = ^ H T, $' = $ H T.

Because (^ : $ ) = = ( ^ ' : $ ' ) = = £ , we see that for a G ̂ '
V^X,(or) = V^(X^,) (a) and, because ^' is abelian,

V ; X , ( a ) = X , ( ( 7 f i ) = ^ ( a f i ) = ^ _ , ( a )
as is required.

In proving the next three lemmas, we shall suppose that the
group extension

1 —^ T —^ A —^ 2 —^ 1 (6.1)

is split. There is no loss of generality in making this assumption.
For, if the extension is not spUt, we canjmd a tame extension
J D E^ D F. with Gal(J/F.) = A , where A is split with respect
to the corresponding exact sequence, and where the extension
J/Eq is unramified. We would then prove the corresponding results
for J/K and use the fact that W* is inflative, so long as W^ and
W^ are obtained from W^ and W^ by the same c G F* So
now we choose 0 in A so that A = < 0 , T) and < Q ) H T = { 1 } .
It will be convenient to always choose our abelian character ^.
of H,., which extends ^, , to be trivial on Q^''^ . Then ^, is
uniquely defined.

Proof of Lemma 11. — We firstly show that

W*(Xi)2 = W^Xo)2^0^ mod ̂  .

We know that x/ = Ind^.(S,) for ; = 0, 1 , and from
Lemma 11.1 of [3] (or, by straight-forward computation), because
^oiHi =^ mod^g,

W*(Ind^ao,H^ - W = W*0o,^ - Si)2 = 1 mod^ .

Now we observe that, by Lemma 15

W*(Ind^(^,H,))2 = W^oiH^)2 = W*^)2^^ = W^Xo)2^^ .
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Let T6 denote the subgroup of T formed by the 6th powers
of elements in^ T, and put^ P = (^"o) ^ T 6 ) . Then, by Lemma
14, W*(lnd^|p))4 =W*(^ip)4 and, by Lemma 17, on putting
^ = HO . ^ = P, \) == SOIP . J^-i = ^o , we obtain

W*ao,p)4 = W*^,)^ = W^Xo)^ . (6.2)

On the other hand, we claim that,

Ind^ip) = Xo + S xr (6.3)
( j j

where a? is summed through Gal(B^Bo). Clearly to show (6.3),
it is enough to establish

Indp^oip) = So + Z Ind^). (6.4)
CJ 1

We know by Frobenius reciprocity that (Ind^°(^p), ̂ ) = 1 .
Moreover, because Ho/H^ identifies as the Galois group of A ^ / B ^ A p ,

we see that the various Ind^(^), for CD <E Gal(Bi/Bo), are all
irreducible and distinct. Also, for each such a?, by a double appli-
cation of Frobenius reciprocity,

(Ind^aoip), Ind^Or)) = (SOIPHH, , ^pnH,) = 1 •

Thus, by counting degrees, (6.4), and whence (6.3), is established.
So now we have

W*(Ind^,p))4 = W*(Xo)4 n W*(x?4

=W*(x,)NB^/B,(W*(Xi)4)

since, by Lemma 9, for such co, W*(x^)2 = W*(Xl)2CJ . From this,
together with (6.2), we obtain,

NB,/B,(W*(Xi))4 = W^x,)^"^ .
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Proof of Lemma 12. - By hypothesis H, = H,_i . We put
P = < 0^^ , T2) . From Lemma 14 we know that

W*(?,|p)4 = W*(lnd^a,|p))4

and, by Frobenius reciprocity, it is easily seen that

Indp^ip) = S (" •
o»(=Gal(A,/A^)

However, by Lemma 9, we know that for such a?,

W*(^)2 = W*((.)2^ ,
and so we deduce that

W*0,,p)4 == N,/^(W*0>)
which by Lemma 14

-N./.^CW^x,)4).

Moreover, we remark that if C = 2 and (Ho: H^) > 1 , then the
absolute norm of the maximal ideal of the ring of integers of E 1

is congruent to 1 mod (4) (because it is a square). So, using Lemma
14 (ii) and arguing as above, we may derive that,

W*a„p) 2 ==N^,_,(W*(x,) 2) .

On the other hand, applying Lemma 17, putting ^ = H ^ ,
$ = P, jLi,_i = ^_, , X, = i?,,p , we obtain W*a,,p)2 = W*^..^ .

Because H .̂ = H^ , applying Lemma 14 we obtain,

w*a,ip)2 == w^x^i)2'
Thus we have now shown that N,^_i(W*(x,)4) = W^x/.i)^.
Moreover, if C = 2 with (H^: H^.) = 2, then we have shown
N./.^W^x^-W^x^)2 '.

Proof of Lemma 13. - We put P = < e^^-i), T^) and we let
v

let 7 .̂ be an abelian character of P which extends ^-m.np • (Such
a character exists because H,_^ acts trivially on ^,_^ , and whence
trivially on $ g) . By a double application of Frobenius reciprocity,
we obtain that

(Ind^-^T?,), Ind^-1^,)) = (^p^., ^ipnH? = 1 •
TJ V

But Ind^."1^) is irreducible, and so, because both characters
in the left hand side of (6.5) have the same degree (namely C) ,
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we deduce that Ind^'-K^) = Ind^-i(^). Hence ^.=Ind^(7^.),
and of course, as usual, we know that \^ = Ind^ (^) for k = f ,
/ - 1 . So, from Lemma 14, we have W*(x,)4 = W*(^.)4 .

Moreover, applying Lemma 17 with ^ = H,_i , $ = P ,
^•-i = Li . \ = ̂ . we obtain W*^)^ == W*(7?,)4 and,
using W*(x,_i)4 = W*(^_,)4 , we deduce that

W*(x,)4 -W^,)4 =W*(x^.l)4f

as is required.

Proof of Lemma 16. -We suppose then that a G R ^ . As
explained prior to the statement of Lemma 16, Hy is an abelian
group, and so, without loss of generality, we may take a to be an
abelian character. Then the statement that a(TT~1) = W*(a)2

follows straight from the definition of W(a) and W*(a), once
we have observed that W(a) W(a) = 1 and further, that if a is
unramified, then a(T) = a(T) = 2 \^^(uc~1) == — 1 . (Because
^M(*c~1) induces a non-trivial additive character on the group
0^ modp).

So now we suppose that j3 G R» . In order to show"o
Det(TT-1) (j3) = ̂ (^WO:HV) ,

by linearity it is sufficient to assume that j8 is irreducible. We note
that because v = r if 6 ^ 2 (resp. v = u if C = 2), j3 is either
abelian, or, of the form Ind^S), for some abelian character ^
of H, .

_ First we_suppose that j8 is abelian. We put a = jSI^ . Then
j3(TT-1) = a(TT-1), so that by the first part of this proof v

^(TT-^WW =W*(^JH/
and by Lemma 15 = W*^)2^0'11^

as is required. So now, lastly, we suppose j3 is non-abelian with
j3 = Ind^° (S) . By Mackey's restriction theorem, j3L = ^ ^

v ^
where 77 is summed through a transversal of Hy in H() . (Here
S17 ^denotes the composition of ^ with conjugation by 17). Hence,
as T , T He in Z[^] T C Z[^] H, ,

DetCrT-1)^) = n ^(TT-1).
T?
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However, by the first part of this proof,

^(TT-1) =W*(^)2

which by Lemma 14 = W*(Ind^°(P))2 = W*(j8)2.

Thus we obtain that Det(TT-1) (j3) = W*^)2^0^ which completes
the proof of the lemma.
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