Let be a selfadjoint classical pseudo-differential operator of order with non-negative principal symbol on a compact manifold. We assume that is hypoelliptic with loss of one derivative and semibounded from below. Then exp, , is constructed as a non-classical Fourier integral operator and the main contribution to the asymptotic distribution of eigenvalues of is computed. This paper is a continuation of a series of joint works with A. Menikoff.
Soit un opérateur pseudo-différentiel classique, d’ordre , de symbole principal non-négatif, sur une variété compacte. On suppose que est hypoelliptique avec perte d’une dérivée et semi-borné inférieurement. On construit alors exp, comme un opérateur intégral de Fourier non classique et on calcule la contribution principale à la distribution asymptotique des valeurs propres de . Ce travail complète une série de travaux en collaboration avec A. Menikoff.
@article{AIF_1980__30_2_109_0, author = {Sj\"ostrand, Johannes}, title = {On the eigenvalues of a class of hypo-elliptic operators. {IV}}, journal = {Annales de l'Institut Fourier}, pages = {109--169}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {30}, number = {2}, year = {1980}, doi = {10.5802/aif.788}, zbl = {0417.47024}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.788/} }
TY - JOUR AU - Sjöstrand, Johannes TI - On the eigenvalues of a class of hypo-elliptic operators. IV JO - Annales de l'Institut Fourier PY - 1980 SP - 109 EP - 169 VL - 30 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.788/ DO - 10.5802/aif.788 LA - en ID - AIF_1980__30_2_109_0 ER -
%0 Journal Article %A Sjöstrand, Johannes %T On the eigenvalues of a class of hypo-elliptic operators. IV %J Annales de l'Institut Fourier %D 1980 %P 109-169 %V 30 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.788/ %R 10.5802/aif.788 %G en %F AIF_1980__30_2_109_0
Sjöstrand, Johannes. On the eigenvalues of a class of hypo-elliptic operators. IV. Annales de l'Institut Fourier, Volume 30 (1980) no. 2, pp. 109-169. doi : 10.5802/aif.788. https://aif.centre-mersenne.org/articles/10.5802/aif.788/
[1] A class of hypoelliptic pseudodifferential operators with double characteristics, Math. Ann., 217 (1975), 165-188. | MR | Zbl
,[2] Neuer Beweis und Verallgemeinerung der Tauberschen Sätze etc., J. Reine u. Angew. Math., 164 (1931), 27-39. | JFM | Zbl
,[3] Lower bounds for pseudo-differential operators, Ark. f. Math., 9 (1971), 117-140. | MR | Zbl
,[4] Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem, Comm. P.D.E., 1 (1976), 313-400. | MR | Zbl
and ,[5] A calculus for Fourier integral operators in domains with boundary and applications to the oblique derivative problem, Comm. P.D.E., 2 (1977), 857-935. | MR | Zbl
and ,[6] On the eigenvalues of a class of hypoelliptic operators, Math. Ann., 235 (1978), 55-85. | MR | Zbl
and ,[7] On the eigenvalues of a class of hypoelliptic operators II, Springer L. N., n°755, 201-247. | MR | Zbl
and ,[8] The eigenvalues of hypoelliptic operators, III, the non semibounded case, Journal d'Analyse Math., 35 (1979), 123-150. | Zbl
and ,[9] Eigenvalues for hypoelliptic operators and related methods, Proc. Inter. Congress of Math., Helsinki, 1978, 445-447.
,Cited by Sources: