Soient un corps abélien réel, un nombre premier, premier à et le quotient du groupe des unités semi-locales de par celui des unités cyclotomiques : on donne la structure galoisienne de la limite projective des , généralisant un théorème d’Iwasawa, et on applique ceci à la comparaison de conjecture classique sur la limite projective des groupes de classes.
Let an abelian number field, a prime number, prime to , the quotient of the group of semi-local units in by the group of cyclotomic units. By giving the Galois structure of , we generalise a theorem of Iwasawa and use this result for comparing classical conjectures about projective limits of class groups.
@article{AIF_1979__29_4_1_0,
author = {Gillard, Roland},
title = {Unit\'es cyclotomiques, unit\'es semi-locales et ${\mathbb {Z}}_\ell $-extensions. {II}},
journal = {Annales de l'Institut Fourier},
pages = {1--15},
year = {1979},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {29},
number = {4},
doi = {10.5802/aif.763},
zbl = {0403.12006},
mrnumber = {81e:12005b},
language = {fr},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.763/}
}
TY - JOUR
AU - Gillard, Roland
TI - Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II
JO - Annales de l'Institut Fourier
PY - 1979
SP - 1
EP - 15
VL - 29
IS - 4
PB - Institut Fourier
PP - Grenoble
UR - https://aif.centre-mersenne.org/articles/10.5802/aif.763/
DO - 10.5802/aif.763
LA - fr
ID - AIF_1979__29_4_1_0
ER -
%0 Journal Article
%A Gillard, Roland
%T Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II
%J Annales de l'Institut Fourier
%D 1979
%P 1-15
%V 29
%N 4
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.763/
%R 10.5802/aif.763
%G fr
%F AIF_1979__29_4_1_0
Gillard, Roland. Unités cyclotomiques, unités semi-locales et ${\mathbb {Z}}_\ell $-extensions. II. Annales de l'Institut Fourier, Tome 29 (1979) no. 4, pp. 1-15. doi: 10.5802/aif.763
[1] , Éléments de mathématique, Algèbre commutative, Chap. 7, Hermann, Paris, 1965. | Zbl
[2] , p-adic L-functions and Iwasawa's theory, Durham conference on Algebraic Number Theory, edited by A. Fröhlich, Academic Press, Londres, 1977. | Zbl | MR
[3] et , On l-adic zeta functions, Ann. of Math., 98 (1973), 498-550. | Zbl | MR
[4] et , On p-adic L-functions and elliptic units, J. Austral. Math. Soc., series A 26 (1978), 1-25. | Zbl | MR
[5] , Some modules attached to Lubin-Tate groups, à paraître.
[6] , Iwasawa invariants of abelian number fields, Math. Ann., 234 (1978), 9-24. | Zbl | MR
[7] et , The Iwasawa invariant µp vanishes for abelian number fields, Ann. of Math., à paraître. | Zbl
[8] , Unités cyclotomiques, unités semi-locales et Zl-extensions, Ann. Inst. Fourier, t. 29, fasc. 1 (1979), 49-79. | Zbl | MR | Numdam
[9] , Remarques sur les unités cyclotomiques et les unités elliptiques, J. of Numbers Theory, 11, 1 (1979), 21-48. | Zbl | MR
[10] , On p-adic L-functions and cyclotomic fields, Nagoya Math. J., 56 (1974), 61-77. | Zbl | MR
[11] , On p-adic L-functions and cyclotomic fields II, Nagoya Math. J., 67 (1977), 139-158. | Zbl | MR
[12] , On 2-adic L-functions and cyclotomic invariants, Math. Zeit., 159 (1978), 37-45. | Zbl | MR
[13] , On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, vol. 16, n° 1, (1964), 42-82. | Zbl | MR
[14] , On Zl-extensions of algebraic number fields, Ann. of Math., 98 (1973), 246-326. | Zbl | MR
[15] , Lectures on p-adic L-functions, Ann. Math. Studies, 74, Princeton Univ. Press, 1972. | Zbl | MR
Cité par Sources :



