The general Stein union problem is solved: given an increasing sequence of Stein open sets, it is shown that the union is Stein if and only if is Hausdorff separated.
Le problème général des réunions de Stein est résolu : étant donné une suite croissante des ouverts de Stein, on démontre que la réunion est de Stein si et seulement si est séparé.
@article{AIF_1977__27_3_117_0, author = {Markoe, Andrew}, title = {Runge families and inductive limits of {Stein} spaces}, journal = {Annales de l'Institut Fourier}, pages = {117--127}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {27}, number = {3}, year = {1977}, doi = {10.5802/aif.663}, zbl = {0323.32014}, mrnumber = {58 #28665}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.663/} }
TY - JOUR AU - Markoe, Andrew TI - Runge families and inductive limits of Stein spaces JO - Annales de l'Institut Fourier PY - 1977 SP - 117 EP - 127 VL - 27 IS - 3 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.663/ DO - 10.5802/aif.663 LA - en ID - AIF_1977__27_3_117_0 ER -
Markoe, Andrew. Runge families and inductive limits of Stein spaces. Annales de l'Institut Fourier, Volume 27 (1977) no. 3, pp. 117-127. doi : 10.5802/aif.663. https://aif.centre-mersenne.org/articles/10.5802/aif.663/
[1] Carleman estimates for the Laplace-Beltrami equation on complex manifolds Publ. Math., No. 25, IHES, Paris (1965). | EuDML | Numdam | Zbl
and ,[2] Theorie der Funktionen mehrerer komplexer Veränderlichen, Zweite erweiterte Auflage, Springer-Verlag, Berlin 1970. | Zbl
and ,[3] An increasing sequence of Stein manifolds whose limit is not Stein, to appear. | Zbl
,[4] Charakterisierung der holomorph-vollständigen Raüme, Math. Ann., 129, (1955), 233-259. | EuDML | Zbl
,[5] éléments de géométrie algébrique, III (première Partie), Publ. Math. No. 11, IHES, Paris, 1961. | Numdam
,[6] Analytic Functions of Several Complex Variables, Prentice Hall, Englewood Cliffs, N.J., 1965. | MR | Zbl
and ,[7] On Serre duality and envelopes of holomorphy, Trans. AMS, 128 (1967), 414-446. | MR | Zbl
,[8] Complexe dualisant et théorèmes de dualité en géométrie analytique complexe, Publ. Math., No. 38, IHES, Paris, 1971. | EuDML | Numdam | Zbl
and ,[9] Dualité relative en géométrie analytique complexe, Inv. Math., (1971). | EuDML | MR | Zbl
, and ,[10] Rungescherssatz and a condition for Steiness for the limit of an increasing sequence of Stein spaces.
,[11] Überlagerungen holomorph-vollständiger komplexer Raüme, Arch. Math., 7 (1956), 354-361. | MR | Zbl
,[12] An example concerning polynomial convexity, Math. Ann., 139 (1959), 147-150. | MR | Zbl
,[13] Pseudoconvexité au-dessus d'espaces plus ou moins homogènes, Inv. Math., 26 (1974), 303-322. | MR | Zbl
,[14] Konvergente Folgen von Reguläritätsbereichen und die meromorphe Konvexität, Math. Ann., 116 (1939), 204-216. | JFM | Zbl
and ,[15] Runge families and increasing unions of Stein spaces, research announcement, Bull. AMS, 82, No 5, (1976). | MR | Zbl
,Cited by Sources: