Une algèbre booléenne possède la propriété (I) si étant données les suites dans avec pour tout , il existe un élément de tel que pour tout . Soit une algèbre ayant la propriété (I). On démontre que si ( un espace de Banach ) est une suite de mesures fortement additives telle que existe pour chaque , alors définit une mesure fortement additive et les sont uniformément fortement additives. Le théorème de Vitali-Hahn-Saks (VHS) pour des mesures fortement additives dans un espace Banach est déduit du théorème de Nikodym. Une preuve du théorème (VHS) pour des mesures à valeurs dans un groupe est donnée.
A Boolean algebra has the interpolation property (property (I)) if given sequences , in with for all , there exists an element in such that for all . Let denote an algebra with the property (I). It is shown that if ( a Banach space) is a sequence of strongly additive measures such that exists for each , then defines a strongly additive map from to and the are uniformly strongly additive. The Vitali-Hahn-Saks (VHS) theorem for strongly additive -valued measures defined on is derived from the Nikodym boundedness theorem. A proof of the VHS theorem for group-valued measures is given.
@article{AIF_1976__26_4_99_0, author = {Faires, Barbara T.}, title = {On {Vitali-Hahn-Saks-Nikodym} type theorems}, journal = {Annales de l'Institut Fourier}, pages = {99--114}, publisher = {Imprimerie Durand}, address = {28 - Luisant}, volume = {26}, number = {4}, year = {1976}, doi = {10.5802/aif.633}, zbl = {0309.46041}, mrnumber = {56 #572}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.633/} }
TY - JOUR AU - Faires, Barbara T. TI - On Vitali-Hahn-Saks-Nikodym type theorems JO - Annales de l'Institut Fourier PY - 1976 SP - 99 EP - 114 VL - 26 IS - 4 PB - Imprimerie Durand PP - 28 - Luisant UR - https://aif.centre-mersenne.org/articles/10.5802/aif.633/ DO - 10.5802/aif.633 LA - en ID - AIF_1976__26_4_99_0 ER -
Faires, Barbara T. On Vitali-Hahn-Saks-Nikodym type theorems. Annales de l'Institut Fourier, Tome 26 (1976) no. 4, pp. 99-114. doi : 10.5802/aif.633. https://aif.centre-mersenne.org/articles/10.5802/aif.633/
[1] Convergent sequences of finitely additive measures, Pacific J. Math., 11 (1961), 395-404. | MR | Zbl
,[2] On bases and unconditional convergence of series in Banach spaces, Studia Math., 17 (1958), 151-164. | MR | Zbl
and ,[3] On finitely additive vector measures, Proc. Nat. Acad. Sci., U.S.A., 67 (1970), 1294-1298. | MR | Zbl
and ,[4] The Vitali-Hahn-Saks and Nikodym theorems for additive set functions, Bull. Amer. Math. Soc., 76 (1970), 1297-1298. | MR | Zbl
,[5] The Vitali-Hahn-Saks and Nikodym theorems, Bull. Amer. Math. Soc., 79 (1973), 758-760. | MR | Zbl
,[6] Applications of weak compactness and bases to vector measures and vectoriel integration, Revue Roum. Math., 18 (1973), 211-224. | MR | Zbl
,[7] Grothendieck spaces and vector measures, Vector and Operator Valued Measures and Applications, Academic Press, New York, 1973, 97-108. | MR | Zbl
,[8] On vector measures, Trans. Amer. Math. Soc., 198 (1974), 253-271. | MR | Zbl
and ,[9] Convergence and boundedness of measures on non-sigma complete algebras, preprint.
, and ,[10] Vector measures, Notes prepared at Kent State University and the University of Illinois, 1973.
and ,[11] Topological rings of sets, continuous set functions, integration II, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astronom. et Phys., 20 (1972), 277-286. | Zbl
,[12] Linear Operators, Part I, Interscience, New York, 1958. | MR | Zbl
and ,[13] Criteria of compactness in function spaces, Amer. J. Math., 74 (1952), 168-186. | Zbl
,[14] Über Folgen linearer Operationen, Monatsh. für Math. und Physik, 32 (1922), 3-88. | JFM
,[15] Sur les familles bornées de fonctions parfaitement additives d'ensemble abstrait, Monatsh. für Math. und Physik, 40 (1933), 418-426. | JFM | Zbl
,[16] Sur les suites convergentes de fonctions parfaitement additives d'ensemble abstrait, Monatsh, für Math. und Physik, 40 (1933), 427-432. | JFM | Zbl
,[17] Banach spaces on which every unconditionally converging operator is weakly compact, Bull. Acad. Polon. Sci., Sér. Sci. Math., Astr. et Phys., 10 (1962), 641-648. | MR | Zbl
,[18] Decomposition of additive set functions, Duke Math. J., 10 (1943), 653-665. | MR | Zbl
,[19] On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math., 37 (1970), 13-36. | MR | Zbl
,[20] Addition to the note on some functionals, Trans. Amer. Math. Soc., 35 (1933), 967-974. | JFM | MR | Zbl
,[21] Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267-280. | MR | Zbl
,[22] Applications of a lemma of Rosenthal to vector measures and series in Banach spaces, Preprint.
.,[23] Sull'integrazione per serie, Rend. del Circolo Mat. di Palermo, 23 (1907), 137-155. | JFM
,[24] On Vitali-Hahn-Saks Type Theorems, Bull. Amer. Math. Soc., 80 (1974), 670-674. | MR | Zbl
,Cité par Sources :