The aim of this paper is to show how, in order to prove regularity theorems, Hölder estimates, i.e. estimates involving products of powers of different semi-norms, can be used as well as standard estimates, and may in some instances be casier to prove.
Cet article a pour but de montrer comment, en vue de prouver certains théorèmes de régularité, des estimations classiques peuvent être remplacées par des estimations höldériennes, c’est-à-dire faisant intervenir des produits de puissances de différentes semi-normes ; ces dernières peuvent parfois être plus faciles à établir.
@article{AIF_1976__26_2_35_0,
author = {Unterberger, Andr\'e and Unterberger, Julianne},
title = {H\"older estimates and hypoellipticity},
journal = {Annales de l'Institut Fourier},
pages = {35--54},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {26},
number = {2},
year = {1976},
doi = {10.5802/aif.613},
zbl = {0318.35018},
mrnumber = {54 #5611},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.613/}
}
TY - JOUR AU - Unterberger, André AU - Unterberger, Julianne TI - Hölder estimates and hypoellipticity JO - Annales de l'Institut Fourier PY - 1976 SP - 35 EP - 54 VL - 26 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.613/ DO - 10.5802/aif.613 LA - en ID - AIF_1976__26_2_35_0 ER -
%0 Journal Article %A Unterberger, André %A Unterberger, Julianne %T Hölder estimates and hypoellipticity %J Annales de l'Institut Fourier %D 1976 %P 35-54 %V 26 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.613/ %R 10.5802/aif.613 %G en %F AIF_1976__26_2_35_0
Unterberger, André; Unterberger, Julianne. Hölder estimates and hypoellipticity. Annales de l'Institut Fourier, Tome 26 (1976) no. 2, pp. 35-54. doi: 10.5802/aif.613
[1] and , Spatially inhomogeneous pseudo-differential operators I, Comm. Pure Appl. Math., 27 (1974), 1-24. | Zbl | MR
[2] , with the assistance of R. Vaillancourt, Pseudo-differential operators, Lecture Notes, N. Y. Univ., 1968.
[3] , Linear partial differential operators, Springer Verlag, 1963. | Zbl
[4] , On the singularities of solutions of partial differential equations with constant coefficients, Symp. on linear partial differential operators, Jerusalem, June 1972.
[5] , On the existence and regularity of solutions of linear pseudo-differential equations, L'Enseignement Mathématique, 17 (2) (1971), 99-163. | Zbl | MR
[6] , Hypoelliptic second-order differential equations, Acta Math., 119 (1967), 147-171. | Zbl | MR
[7] , Continuous dependance on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-585. | Zbl | MR
[8] , Pseudo-differential operators and hypoellipticity, Proc. Symp. Pure Math., 23 (1973), 61-69. | Zbl | MR
[9] , Algebras of pseudo-differential operators, J. Fac. Sci. Univ. Tokyo, 17 (1970), 31-50. | Zbl | MR
[10] , Résolution d'équations aux dérivées partielles dans des espaces de distributions d'ordre de régularité variable, Ann. Inst. Fourier, 21 (1971), 85-128. | Zbl | MR | Numdam
[11] , Ouverts stablement convexes par rapport à un opérateur différentiel, Ann. Inst. Fourier, 22 (1972), 269-290. | Zbl | MR | Numdam
[12] , On the boundedness of pseudo-differential operators of type ρ, δ with 0 ≤ ρ ˭ δ ˂ 1, Tôhoku Math. J., 25 (1973), 339-345. | Zbl | MR
Cité par Sources :



