One gives a general definition of capacity which includes -capacity, extremal length and a quantity defined by N.G. Meyers.
On définit une capacité qui généralise la -capacité, la longueur extrémale et la quantité définie par N.G. Meyers.
@article{AIF_1975__25_3-4_499_0,
author = {Ohtsuka, Makoto},
title = {A general definition of capacity},
journal = {Annales de l'Institut Fourier},
pages = {499--507},
year = {1975},
publisher = {Institut Fourier},
address = {Grenoble},
volume = {25},
number = {3-4},
doi = {10.5802/aif.594},
zbl = {0303.31010},
mrnumber = {53 #11072},
language = {en},
url = {https://aif.centre-mersenne.org/articles/10.5802/aif.594/}
}
TY - JOUR AU - Ohtsuka, Makoto TI - A general definition of capacity JO - Annales de l'Institut Fourier PY - 1975 SP - 499 EP - 507 VL - 25 IS - 3-4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.594/ DO - 10.5802/aif.594 LA - en ID - AIF_1975__25_3-4_499_0 ER -
Ohtsuka, Makoto. A general definition of capacity. Annales de l'Institut Fourier, Tome 25 (1975) no. 3-4, pp. 499-507. doi: 10.5802/aif.594
[1] , Lectures on potential theory, Tata Inst. Fund. Research, Bombay, 1960. | Zbl | MR
[2] , A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | Zbl | MR
[3] , Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
[4] , Extremal length as a capacity, Mich. Math. J., 17 (1970), 117-128. | Zbl | MR
Cité par Sources :



