On définit une capacité qui généralise la -capacité, la longueur extrémale et la quantité définie par N.G. Meyers.
One gives a general definition of capacity which includes -capacity, extremal length and a quantity defined by N.G. Meyers.
@article{AIF_1975__25_3-4_499_0, author = {Ohtsuka, Makoto}, title = {A general definition of capacity}, journal = {Annales de l'Institut Fourier}, pages = {499--507}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {3-4}, year = {1975}, doi = {10.5802/aif.594}, zbl = {0303.31010}, mrnumber = {53 #11072}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.594/} }
TY - JOUR AU - Ohtsuka, Makoto TI - A general definition of capacity JO - Annales de l'Institut Fourier PY - 1975 SP - 499 EP - 507 VL - 25 IS - 3-4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.594/ DO - 10.5802/aif.594 LA - en ID - AIF_1975__25_3-4_499_0 ER -
Ohtsuka, Makoto. A general definition of capacity. Annales de l'Institut Fourier, Tome 25 (1975) no. 3-4, pp. 499-507. doi : 10.5802/aif.594. https://aif.centre-mersenne.org/articles/10.5802/aif.594/
[1] Lectures on potential theory, Tata Inst. Fund. Research, Bombay, 1960. | MR | Zbl
,[2] A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand., 26 (1970), 255-292. | MR | Zbl
,[3] Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
,[4] Extremal length as a capacity, Mich. Math. J., 17 (1970), 117-128. | MR | Zbl
,Cité par Sources :