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A GENERAL DEFINITION OF CAPACITY
by Makoto OHTSUKA

Dedie a Monsieur M. Brelot a V occasion
de son 70e anniversaire.

Introduction.

During the past 20 years the notion of extremal length
proved its usefulness in many branches of analysis. Given a
family F of locally rectifiable curves in the (re, i/)-plane,
the extremal length of F is defined to be the reciprocal of
the infimum of j j p2 dx dy for the family of Borel measurable
functions p > 0 satisfying j p ds ^ 1 for every y e r.

There are also many definitions of capacity. One way to
define the Newtonian capacity in R/1 is to consider the class
M of non-negative measures pi with finite energy. It is known
that grad U^ exists a.e., where U^ denotes the Newtonian
potential of [JL. The Newtonian capacity of a compact set K
is defined to be the infimum of j |grad U^|2 dx taken
with respect to [L e M satisfying U^ ^ 1 on K.

Recently, Meyers [2] defined C^^p(A) for A <= R'1 by
inf j ^ p d[LQ taken with respect to p ^ 0 satisfying

fk{x, y)pQ/) ^o(y) ^ 1

on A, where (AQ ls a non-negative measure and k{x, y)
is a positive lower semicontinuous function on R" X R".
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In the present note we shall give a general definition of
capacity which includes the above three quantities as special
cases, and prove that this general capacity is continuous
from the left.

1. General definition.

Let n be a space, and F be a family of non-negative func-
tions defined on 0. such that cf^ e F and /i + /2 e F
whenever 0 ^ c < oo and /i, /g e F; we set 0- oo = 0
if 0- oo happens for c/i. It follows that f == 0 belongs to F.
Let 0 =/= oo be a non-negative functional defined on F.
Assume that there exist p, q > 0 such that ^(cf) ^ cp^{f)
for any constant c ^ 0 and f e F, and

Wl + /2^ ^ Wl)^ + W/^

if /i, /2 e F. In addition, we assume that, it /i, /*a, . . . e F
and ^(y^+i + • • • + fn) -> 0 ^ n, m -> oo, then

^- S /^F/c=i
/ n \and 0 ( ^ /fc ) -> 0(f) as n -> oo. It follows that

(0(S/^ < S(0(/,))^
for such {f^}.

Let FQ be another space, and G be a class of subsets of

FO such that I\, r^, . . . e G implies I J F,, e G and that
n

r e G and F7 c: r imply f e G. We shall say that a pro-
perty holds G-a.e. on F c FQ if the exceptional set belongs
to G. For each f e F suppose a non-negative function
Ty(y) is defined G-a.e. on 1 ,̂ and assume that, for any /*i,
/2 e F and c ^ 0, T^ = cT^ and T^ = T^ + T^ hold
and /i ^ /a implies T^ ^ T^, where all relations as to
T^ and T}, are supposed to hold wherever they are
defined.

We shall say that f is G-almost admissible (or simply
G-alm. ad.) for F c Fo when / ' eF and Ty ^ 1 G-a.e.
on r. We set

GG(F)= inf (!>(/•)
G-alm. ad./
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if there is at least one G-alm. ad. /, and otherwise

CG(F) = oo.

Evidently CcfF) ^ C^F7) if F c: r. We observe that
Cc^r) = 0 for every F e G because f = 0 is G-alm. ad.
and 0(0) = 0.

We shall denote by L the family of functions f e F with
finite 0(f).

THEOREM 1. — CG(F) == 0 if and only if there exists f e L
such that Tf=co G-a.e. on -T.

Proof. — The if part follows from the definition of CG
and the properties of 0 and Ty. To prove the only-it part
take f^ e F and I\ e G for each n so that Ty ^ 1 on
r - I\ and (0(/^ ^ 2-, and set /1 = ^ ^. Then fe F
and "

(0(/^ ^ 2($(/,))^ ^ 1.
We have

m

T/Y) > S T/,(Y) > m
fc=l

for every y e F —- ^_j F^ and m so that T/y) = oo for
n

every ^ e F — [_j F^ Since U I\ e G, our theorem is
proved. n n

LEMMA 1. - fCcjU^y ^ s(CG(^n))<?•
\ \ n / I

Proof. — We may assume that 2;(CG(I\))^ < oo. Given
£ > 0, let fn be G-alm. ad. for I\ such that

Wn)^ ^ (CG(rj)^ + £2-.

By our assumption on 0, /*== S/*̂  e F and

(O^))^ ^ S(0(/,))^

Evidently /* is G-alm. ad. for [_j I\ so that
n

(^(urj)^ < (a)(/-))^ < 2(0(^))^ < s(CG(rj)^ + e.
This gives the required inequality.
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LEMMA 2. — Suppose fe F satisfies Ty ^ 1 on F — r",
where W) = 0. TTim Co(r) < <D(/').

Proo/". — By Theorem 1 there exist f e L and F" 6 G
such that T/. = QO on I" — T " . For any e > 0 we have
Tf+tf 5? 1 on r — r", and hence

Co(r) ^ o(/-+ sf) < {(o^))7 + (^(f))^ ^ o(/')
as s -̂  0. Thus CG(F) < <D(/").

THEOREM 2. - Denote {F* c Fo; ^(F*) = 0} fcy Go.
Then

c^r} = Co(r)
/or any F c: Fo.

Proof. — We observe that I\, Fg, . . . e Go implies

t J r^ e Go in virtue of Lemma 1 and that F e Go and

F c: r imply P e Go. Since G c Go, CG/F) ^ C^F).
Assume that CG/F) < oo, and take fe F such that T^ ^ 1
on r - r' where P e Go. By Lemma 2 C^F) ^ 0(/1).
Because of the arbitrariness of f we derive

Co(F) ^ CG/F).

The equality now follows.

THEOREM 3 (cf. [2], Theorem 4). — Each of the following
statements implies the succeeding one.

(i) Ty^ -> Tf in CG, namely, for any a > 0,

Cc({T e Fo - F; |T^(T) - T/Y)I ^ ^}) -> 0 ^ n ̂  oo,

where F G G and aH T^ and Ty are defined on FQ — F;
oo — oo is set to be 0 if it happens for Ty^ — Ty.

(ii) TVe can find {f^} with the property that, gi^en e > 0,
there exists F7 c Fo wi^ CG(^ /) < e such that Ty^ — Ty -> 0
uniformly on Fo — F7.

(iii) For (^ sequence {f^} in (ii), Ty^ -> Tj. on Fo — F",
w^re CG(^ / /) = 0.
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Proof, — (i) -> (ii). There exist {f^} and {I\} in FQ
such that, for each k, I\ => F, (CG^))^ ^ 2-* and

|T^-T,| ̂  on ro-r,

Given s > 0, choose ky so that 2-fco+l < s9. We see that
00

Ty^ — Ty -> 0 uniformly on Fo — [J I\, and
nk fc=fco

/ / °° \ \ ? ^

(cG(Ur, < 5 (CG(r,))» < ^
\ \k==ko / / fc==fco

by Lemma 1. This establishes (i) —>• (ii).
(ii) -— (iii) is evident.

Now, let Y(/*, g) be a functional on F X F such that, for
any A? /2 ^ F? there exists f e F satisfying $(/") ^ Y(/i, f^)
and [T^ — T^| ^ Ty- G-a.e. on Fo. Then we have

THEOREM 4. — J^or aZZ /i, /2 ^ F ^^ 0 < a < oo w^
fca^

Co({y e Fo - r; |T,(r) - T^(T)| ^ a}) ^ a-^(f^ /,),

where F e G ^5 chosen so that both T^ and Ty^ are defined
on FO — P.

Proo/*. - Denote { y e 1^-1-; |T^(Y} - T^y)! > a}
by r'. By our assumption there exists f e F such that
°(f) ^ ^(A. /2) and |T^ - TyJ ^ T^ G-a.e. on Fo. Evi-
dently f/a is G-alm. ad. for F7 so that

Co(r) ^ <D (^\ ^ a-^(/,, /,).
\ a /

Hereafter we assume that the relation

limsupS^(£•^^^- Of^+^^i < 0
n,m-><x> ^ 2i \^ 2i J ^

^or {fn} c: F implies the existence of /*e F such that
T(/,, /•) -^ 0 and 0(fJ ^ 0(n.
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THEOREM 5. — If Ce(r) < oo, then there exist fe F
and r' with CG(T'} == 0 such that Ty > 1 ore F — r"
anrf 0(/-) == C(,(r).

Proof. — Choose ^, /g, . . . G-alm. ad. for F so that
O(^) -> CG(F). Then (/•„ +7J/2 is G-alm. ad. for F,
and hence (&((/•„+ /"J/2) ^ Cc.(r). Therefore

lim sup j0^0^) - <, (f^±H\ ^ 0.
n, /n -> oo ^ ^ \ 2 / \

By our assumption there exists fe F such that 0(^, f) -> 0
and (&(/,) -^ 0(/1) as n-> oo. Choose r e G so that
T^ ^ 1 on r — r for every n. In view of (i) -> (iii) of
Theorem 3 and Theorem 4 we find {/^} and f c: r with
(^(r') == 0 such that

T^== limT. ^ 1 on F — r".
" "/r

fc>30 "

We have <S>{f) = lim <D(/'J = CG(F).
n>QO

THEOREM 6. - if r, f r, then Cr,(rj f c^r).
Proo/". - Denote lim Cc(r,,) by C. Clearly C ^ Co(r).

n^-06

Hence it suffices to establish Cc^F) < C. We may assume
that C < oo. Choose /'„ G-alm. ad. for !'„ so that <D(/,) -> C.
If TO > n, then ,̂ and hence (/„ + /,,)/2 is G-alm. ad.
for r,. Therefore <D((^ + ^)/2) > Ce(rj. As in the proof
of Theorem 5 we find fe F and r" with Cc,(r") = 0 so
that T/y) ^ 1 on F — F' and <&(^) ^ <&(/•) as TI -^ oo
By Lemma 2 Ce(r) < (D(/-). Hence

CG(r) < 0(/-) = lim <D(^) = C.
n^-ao

From this theorem we derive immediately

THEOREM 7. - if CG^ u r") ^ c^r') + Cc^r^ for
any r", F", ^M

W Co (U i\) < s Co(rj.
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Remark. - If max (/i, f^) belongs to F and
<!> (max (^, /,)) ^ O(^) + Q(^)

whenever /•„ f, e F, then Ce(I\ u F,) < Ce(I\) + Q,(r,).
It suffices to show CG(I\ u F,) ^ <D(/,) + ̂  ^hen each
LG(I;) is finite and /". is G-alm. ad. for F,, i = 1, 2 This
is actually true because / •=max(^, /a) is G-alm. ad. for
r\ u Fg so that

CG(r\ u i^) < 0(/-) ^ <&(^) + <D^).

2. Examples.

Let 0 be a general space. Hereafter take as Fg the class
Mo of all non-negative measures defined on a o-field E of
sets in Q, and let F be a family of non-negative E-measu-
rable functions on Q such that c^ e P and A + /a 6 F
whenever c > 0 and ^, f, e F. For every fe P we d'efine
T/jz) to be ffdy.. We take G = 0 and denote Cc(r)
by C(M) for F = M c Mo.

Example 1. — Let F consist of all non-negative E-measu-
rable functions. With a fixed m e My set

°(/') ^ff^m for feF

and T(^, /•,) = /|A - /al" ̂  for ^, /, e F if

ff^dm+ff^dm< oo.
If //-^m + ff^dm = oo,

then define T(^, /,) to be oo. Then Y satisfies the condi-
tions required in § 1. We call C(M) the module of M of
order p. Its reciprocal is called the extremal length of M of
order p. In this case we have sup /„ e F for ^, f^ . . . e F
and <& (sup^,) < S€>(/-J. We obtain the subadditivity from
this immediately without appealing to Theorem 7.

Example 2. - Let F, <D and ^ be as above. Let k{x, e) > 0
be an E-measurable function of x on D for every fixed
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e e E, and a measure for every fixed x e Q. Set

^(^) = J ^(.r, e) d[L{x) for pi e Mo,

and NM = { v « ; [L e M}. We may consider C(NM). This
gives a generalization of C^;^;p(A) referred to in the intro-
duction when M = = { s ^ ; ^ e A } and

k{x, e) = f,k{x, y) d^y},

where A is a subset of R^, s^, is the unit point measure at
x, k{x, y) ^ 0 is E-measurable for every fixed x and (JL()
is a fixed measure in Mo. As in Example 1, (1) follows imme-
diately.

Example 3. — Let 0. be an open set in R/1, E be the
Borel class of sets in il, m be the Lebesgue measure, F
consist of (some) non-negative p-precise functions f in Q,
take <!>(f) = f\gr^df\pdm, and define Y(/i, A) by

Jigrad^-^)!^^.

See [3] for p-precise functions and properties of these func-
tions. In order to assure ^ fn e F for every { / „ } < = F satis-

r n
tying I |grad (fn^-i + •" + /m)^ ^m -> 0, we assume that
there is a family, with positive module of order p, of curves
in Q. such that every fe F tends to 0 along p-a.e. curve
of the family. Then all the conditions required in the beginning
of § 1 are satisfied. If max (/i, /g) e F for any fi, /g e F?
then (1) holds because |grad (max (/i, f^))\ = |grad fi| or
jgrad/al m-a.e. so that $ (max (/i, /a)) ^ <D(/i) + ^{f^)'
Consider the case when the module of order p of the family A
of curves terminating at ^0. is positive, M== {s^.; x e A c Q.}
and F consists of all non-negative p-precise functions in £1
tending to 0 along p-a.e. curve of A. Then the capacity
is called the p-capacity of A (relative to Q.).

Example 4. — Let Q be a topological space, and E be
the Borel class of sets in Q. Let F be as in the beginning
of this section, and 0 be as in § 1. Denote by S the family
of lower semicontinuous functions in Q, and define c(K)
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for every compact set K by inf 0(f) for f E F n S satis-
fying f ̂  1 on K. Let us see that c(KJ \ c(K) if a sequence
{K^} of compact sets decreases to K. Suppose fe F o S
satisfies /'(rr) ^ 1 on K. Since /* is lower semicontinuous,
//(I — l/7z) > 1 for each n ^ 2 on an open set co contai-
ning K. There exists rrio such that K^ <= co, and hence

c(K) ^ ^mc(KJ ^ <D(/y(l - 1/n))

^ "y- iln)-^(f) -> O^)

as n-> oo. The arbitrariness of f yields c(K) = lim c(K^).
W->^c

This together with Theorem 6 shows that C(MA) with
MA = {s^; x e A} is a true capacity if it is shown that

c(K) = C(MK)

for every compact set K; cf. [1$ Part II, Chap. i]. This is
the case, for example, when 0. •== R"(n ^ 3), F consists of
all Newtonian potentials of non-negative measures with finite
energy and ^(f) == | [gradypr fm; the 2-capacity is equal
to the Newtonian outer capacity. Evidently all /*e F are
superharmonic.

Another example of such a case is found in [4]. See [3] too.
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