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Introduction.

During the past 20 years the notion of extremal length
proved its usefulness in many branches of analysis. Given a
family TI' of locally rectifiable curves in the (z, y)-plane,
the extremal length of T' is defined to be the reciprocal of

the infimum of ff 2 dx dy for the family of Borel measurable

functions p > 0 satisfying f{ pds > 1 for every yeTl.

There are also many definitions of capacity. One way to
define the Newtonian capacity in R" is to consider the class
M of non-negative measures p with finite energy. 1t is known
that grad U* exists a.e., where U" denotes the Newtonian
potential of p. The Newtonian capacity of a compact set K
w lgrad Utz dz  taken
with respect to p e M satisfying U* > 1 on K.

Recently, Meyers [2] defined GC,,;,(A) for A < R* by

inffp” dy, taken with respect to ¢ > 0 satisfying

[ k@, )s(y) duoly) > 1

on A, where u, 1s a non-negative measure and k(z, y)
1s a positive lower semicontinuous function on R" X R".

1s defined to be the infimum of
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In the present note we shall give a general definition of
capacity which includes the above three quantities as special
cases, and prove that this general capacity is continuous
from the left.

1. General definition.

Let Q be aspace,and F be a family of non-negative func-
tions defined on Q such that ¢f;eF and fi+f;eF
whenever 0 < ¢ < o and fi, eF; we set 0-0 =0
if 0-c0 happens for cf;. It follows that f = 0 belongs to F.
Let ®=£ o0 be a non-negative functional defined on F.
Assume that there exist p, ¢ > 0 such that ®(¢f) < P@(f)
for any constant ¢ > 0 and feF, and

(@(fy + f2))* < ((f)) + (@(f2))

if fi, f;€F. In addition, we assume that, if fi, f;, ... €F
and O(f,oy + - +f,) >0 as n, m - oo, then

f=kélkaF

and q><g f,,> S ®(f) as n-> 0. It follows that
) (D(ZF)) < Z(®(f,))r
for such {f.}.

Let T, be another space, and G be a class of subsets of
'y such that Ty, T,, ... € G implies UI‘n e G and that

I'eG and I < T mmply I € G. We shall say that a pro-
perty holds G-a.e. on I' = I'y if the exceptional set belongs
to G. For each feF suppose a non-negative function
Tyy) is defined G-a.e. on T,, and assume that, for any f;,
foeF and ¢ >0, T, =¢T, and T, , =T, + T, hold
and f; < f, implies T, < T, where all relations as to
T, and T, are supposed to hold wherever they are
defined.

We shall say that f 1s G-almost admissible (or simply
G-alm. ad.) for T =T, when feF and T,>1 G-a..
on I'. We set

Go(T) = inf O(f)

G-alm.ad.f
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if there 1s at least one G-alm. ad. f, and otherwise
C(;(F) = 00.

Evidently Cq(T) < Cg(IV) if T = I'. We observe that
Ce(l') =0 for every I'e G because f=0 is G-alm. ad.
and @(0) = 0.

We shall denote by L the family of functions fe F with
finite @(f).

Tueorem 1. — Cg(I') = 0 if and only if there exists fe L
such that T;= o G-a.e. on T.

Proof. — The if part follows from the definition of Cg
and the properties of ® and T, To prove the only-if part
take f,eF and I, eG for each n so that T, > 1 on
I — T, and (®(f,))? <27, and set f= Y f,. Then feF

and
(@(F)) < Z(@(fy)? < 1.
We have

Tv) > 5 Tuly) = m

for every yeT —‘ ’P" and m so that Tg(y) = o for
every y €T —-‘ ,F,,. Since U I', € G, our theorem is

proved. n

Lemma 1. — (CG <LuJ I‘,,))q < Z(Cg(T,))1.

Proof. — We may assume that X(Cg(T,))? < . Given
e >0, let f, be G-alm. ad. for I', such that

(@(f)" < (Co(T))? +- €27
By our assumption on @, f = Zf, € F and

(@(f))" < Z(@(f.)).
Evidently f is G-alm. ad. for U I', so that

(Ce(VTn))" < (@(F)7 < Z(@(f))" < Z(Ca(TW))" + «.
This gives the required inequality.



502 MAKOTO OHTSUKA

Lemma 2. — Suppose feF satisfies T, > 1 on T' — IV,
where Cg(T") = 0. Then Cg(T') < O(f).

Proof. — By Theorem 1 there exist f"eL and I'"eG
such that Tp = o0 on I" —TI'”. For any ¢ > 0 we have
Ty 21 on T'— T, and hence

Co(T) < O(f + <f') < (D)) + (D)1} - (f)
as ¢ —> 0. Thus Cg(T') < O(f).

Tueorem 2. — Denote {I'* < I'y; Co(T*) =0} by G,.

Then
Ce,(T') = Cg(T)
for any T < T,.

Proof. — We observe that I'y, T'y, ... e G, 1implies
UI‘,,GGO in virtue of Lemma 1 and that I' e G, and
I < T imply I"eG,. Since G < G Co(T) < Co(T).
Assume that Cg(I') < o, and take fe F such that T, > 1

on I' — T where I"eG,. By Lemma 2 CgI') < @(f).
Because of the arbitrariness of f we derive

Co(T") < Cg,(I).

The equality now follows.

Tueorem 3 (cf. [2], Theorem 4). — Each of the following

statements tmplies the succeeding one.

1) T, - T, in Cg, namely, for any a > 0,
Cel{yely —T;|T.(y) — Ty)| > a}) >0 as n— o,

where T'e G and all T; and T, are defined on T'y — T';
o — o is set to be 0 if it happens for T, — T,.

(ii) We can find {f,} with the property that, given ¢ > 0,
there exists ' = Ty with Co(I") < e such that T;, — T, ~0
uniformly on Ty — IV.

(i) For the sequence {f,} in (i), T; — T, on Ty —T",
where Cg(I'") = 0.
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Proof. — (1) - (11). There exist {f,} and {I',} in T,
such that, for each k, T, 2 T, (Cg(T',))? < 27% and

lenk — Tyl < % on I'y—T,.

Given ¢ > 0, choose k, so that 2%t < ¢?. We see that
I 0

Tf — T; - 0 uniformly on T, ——UI‘,H and

k=ko

(eo( ) < 3, e <«

by Lemma 1. This establishes (1) — (11).
(11) — (11) is evident.
Now, let ¥(f, g) be a functional on F X F such that, for

any fi, f. € F, there exists fe F satisfying ®(f) < ¥Y(fi, f)
and |T, — Tf_l T7 G-a.e. on I'y. Then we have

Tueorem 4. — For all fi, ,€F and 0 <a < ©o we
have

Co({y € To — T'; |T/(y) — Th(y)l = a}) < a?P¥(fy, fa),

where T' € G s chosen so that both T, and T, are defined
on Ty —T.

Proof. — Denote {yeT, —T; |T,(v) — Ty(v)] > a}
by I'. By our assumption there eXlStS feF such that

o(f) < ¥(fy, fz and [T, — Ty < Tf G-ae. on T,. Evi-
dently fla is G-alm. ad. for I’ so that

-~

Co(I") < @ <i> < a?¥(fy, fo).

a

Hereafter we assume that the relation

lim sup 3%)—*2—‘“’—@ — o <f-%f'-">§ <0

n, m->co

for {f,} < F implies the existence of feF such that

¥(fo, f) > 0 and @(f,) > @(f).
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Tueorem 5. — If Cg(T') < oo, then there exist feF
and T' with Cg(I") =0 such that T,>1 on T — T’
and ®(f) = Cg(T).

Proof. — Choose fi, f, ... G-alm. ad. for T' so that
®(f,) - Ce(I"). Then (f, +f.)/2 1s G-alm. ad. for T
and hence @((f, 4+ fn)/2) = Ca4(T'). Therefore

lim sup g————d)(f") _’2_ O (fn) — @ <f—"———5ﬁ>§ < 0.

n, m-> oo

)

By our assumption there exists fe F such that @(f,, f) - 0
and O(f,) > ®(f) as n—> . Choose I'eG so that
T, 21 on T' —I" for every n. In view of (i) - (i) of
Theorem 3 and Theorem 4 we find {f,,} and I'" < T' with
Ge(T") =0 such that

Tf = lkljil Tf"k = 1 on I' —TI7",

We have ®(f) = him @(f,) = Cg(I).

n>w

Tueorem 6. — If T, 4T, then Cg(I',)4} Ce(T
Proof. — Denote lim Cg(T',) by C. Clearly C < Cg(T).

n>oo

Hence it suffices to establish Cg(I') < C. We may assume
that C < . Choose f, G-alm. ad. for I', so that ®(f,) - C.
If m > n, then f, and hence (f, + f,)/2 is G-alm. ad.
for T',. Thercfore ®((f, + f.)/2) > Cs(T,). As in the proof
of Theorem 5 we find feF and I' with CGg(IV) =0 so
that T{y) > 1 on I' — T’ and ®@(f,) > ®(f) as n— oo.
By Lemma 2 Cg(T') < ®(f). Hence

Co(I') < ©(f) = lim ®(f,) = C.

n>oo

From this theorem we derive immediately

Taeorem 7. — If Cg(I'" UT") < Ce(I") + Ca(T")  for
any T, T, then

(1) Co (L"J L) < 3 Calll).
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Remark. — If max (f;, f.) belongs to F and

® (max (fi, f2)) < @(fi) + @(f2)

whenever f;, foeF, then Cg(I'; U Ty) < Co(T'y) + Cg(Ty).
It suffices to show Cg(I'y U T,) < O(f;) + ®(f,) when each
Co(T;) 1s finite and f, 1s G-alm. ad. for T';, t = 1, 2. This
i1s actually true because f= max(fi, f;) 1s G-alm. ad. for
L url, so that

Co(Ty UT,) < ©f) < (fy) + O(fa).

2. Examples.

Let Q be a general space. Hereafter take as T'y the class
M, of all non-negative measures defined on a o-field E of
sets in Q, and let F be a family of non-negative E-measu-
rable functions on Q such that c¢f,eF and fi 4 f,eF
whenever ¢ > 0 and fi, f, € F. For every fe F we define

T{w) to be [fds. We take G =g and denote Cq(T)
by C(M) for T =M < M,.

Ezxample 1. — Let F consist of all non-negative E-measu-
rable functions. With a fixed me M, set

o(f) = [frdm for feF
and ¥(f,, f2) = [ —flrdm for f, fcF if

[frdm+ [ fidm < .
1t [frdm+ [ frdm = o,
then define ¥(fi, fz) to be o. Then ¥ satisfies the condi-
tions required in § 1. We call C(M) the module of M of

order p. Its reciprocalis called the extremal length of M of
order p. In this case we have supf,eF for f,f,, ... €F

and @ (sup f,,) < ZO(f,). We obtain the subadditivity from
this immediately without appealing to Theorem 7.

Example 2. — Let F, ® and ¢ beasabove. Let k(z,e) > 0
be an E-measurable function of z on Q for every fixed
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ec E, and a measure for every fixed z e Q. Set
f k(z, e)du(z) for ueM,,
and Ny = {vp; weM}. We may consider C(Ny). This

gives a generalization of C,,;,(A) referred to in the intro-
duction when M = {e¢,; x€ A} and

k(z, ¢) = [ k(z, y) duo(y),

where A 1is a subset of R,, ¢, 1s the unit point measure at
z, k(z, y) > 0 1s E-measurable for every fixed x and g,
1s a fixed measure in M,. As in Example 1, (1) follows imme-
diately.

Ezxample 3. — Let Q be an open set in R", E be the
Borel class of sets in Q, m be the Lebesgue measure, F
consist of (some) non-negative p-precise functions f in Q,

take ®(f) = [ |grad f|P dm, and define ¥(f,, f) b

[1grad (fy, — fo)l dm.

See [3] for p-precise functions and properties of these func-
tions. In order to assure Y, f, € F for every {f,} = F satis-

fying flgrad (foxs + -+ + fn)|?P dm — 0, we assume that
there is a family, with positive module of order p, of curves
in Q such that every fe F tends to 0 along p-a.e. curve
of the family. Then all the conditions required in the beginning
of § 1 are satisfied. If max (fl, f.) e F for any fi, z€F,
then (1) holds because |grad (max (f, f;))] = |grad fi| or
|grad fy] m-a.e. so that @ (max(f;, f3)) < O(fy) + ©(f2).
Consider the case when the module of order p of the family A
of curves terminating at dQ is positive, M = {¢,;z€ A = Q}
and F consists of all non-negative p-precise functions in Q
tending to 0 along p-a.e. curve of A. Then the capacity
is called the p-capacity of A (relative to Q).

Example 4. — Let Q be a topological space, and E be
the Borel class of sets in Q. Let F be as in the beginning
of this section, and @ be as in § 1. Denote by S the family
of lower semicontinuous functions in Q, and define ¢(K)
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for every compact set K by inf @(f) for fe F NS satis-
fying f > 1 on K. Let ussee that ¢(K,)| ¢(K) if a sequence
{K,} of compact sets decreases to K. Suppose feF n S
satisfies f(z) > 1 on K. Since f is lower semicontinuous,
f[A —1/n) > 1 for each n > 2 on an open set o contai-
ning K. There exists m, such that K, < , and hence

o(K) < lim ¢(K,) < @(f/(1 — 1/n))
< (1 —=1/n)7r0(f) > @(f)

as n— . The arbitrariness of f yields ¢(K) = lim ¢(K,).

m>oxc

This together with Theorem 6 shows that C(M,) with
M, = {e,; z € A} 1is a true capacity if it is shown that

¢(K) = C(Mk)

for every compact set K; cf. [1; Part II, Chap. 1]. This is
the case, for example, when Q = R*(n > 3), F consists of
all Newtonian potentials of non-negative measures with finite

energy and @(f) = f[grad fl2dm; the 2-capacity is equal
to the Newtonian outer capacity. Evidently all fe F are

superharmonic.
Another example of such a case is found in [4]. See [3] too.
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