Makoto Ohtsuka

A general definition of capacity

<http://www.numdam.org/item?id=AIF_1975__25_3-4_499_0>
A GENERAL DEFINITION OF CAPACITY
by Makoto OHTSUKA

Introduction.

During the past 20 years the notion of extremal length proved its usefulness in many branches of analysis. Given a family Γ of locally rectifiable curves in the (x, y)-plane, the extremal length of Γ is defined to be the reciprocal of the infimum of $\int \int \rho^2 \, dx \, dy$ for the family of Borel measurable functions $\rho \geq 0$ satisfying $\int_\gamma \rho \, ds \geq 1$ for every $\gamma \in \Gamma$.

There are also many definitions of capacity. One way to define the Newtonian capacity in \mathbb{R}^n is to consider the class M of non-negative measures μ with finite energy. It is known that $\text{grad } U^\mu$ exists a.e., where U^μ denotes the Newtonian potential of μ. The Newtonian capacity of a compact set K is defined to be the infimum of $\int_{\mathbb{R}^n} |\text{grad } U^\mu|^2 \, dx$ taken with respect to $\mu \in M$ satisfying $U^\mu \geq 1$ on K.

Recently, Meyers [2] defined $C_{k; \rho; \rho}(A)$ for $A \subseteq \mathbb{R}^n$ by $\inf \int \rho^\rho \, d\mu_\rho$ taken with respect to $\rho \geq 0$ satisfying

$$\int k(x, y) \rho(y) \, d\mu_\rho(y) \geq 1$$
on A, where μ_ρ is a non-negative measure and $k(x, y)$ is a positive lower semicontinuous function on $\mathbb{R}^n \times \mathbb{R}^n$.

"Dédié à Monsieur M. Brelot à l'occasion de son 70e anniversaire."
In the present note we shall give a general definition of capacity which includes the above three quantities as special cases, and prove that this general capacity is continuous from the left.

1. General definition.

Let Ω be a space, and F be a family of non-negative functions defined on Ω such that $cf_1 \in F$ and $f_1 + f_2 \in F$ whenever $0 \leq c < \infty$ and $f_1, f_2 \in F$; we set $0 \cdot \infty = 0$ if $0 \cdot \infty$ happens for cf_1. It follows that $f \equiv 0$ belongs to F. Let $\Phi \neq \infty$ be a non-negative functional defined on F. Assume that there exist $p, q > 0$ such that $\Phi(cf) \leq c^p \Phi(f)$ for any constant $c \geq 0$ and $f \in F$, and

$$(\Phi(f_1 + f_2))^q \leq (\Phi(f_1))^q + (\Phi(f_2))^q$$

if $f_1, f_2 \in F$. In addition, we assume that, if $f_1, f_2, \ldots \in F$ and $\Phi(f_{m+1} + \cdots + f_n) \to 0$ as $n, m \to \infty$, then

$$f = \sum_{k=1}^{\infty} f_k \in F$$

and $\Phi\left(\sum_{k=1}^{n} f_k\right) \to \Phi(f)$ as $n \to \infty$. It follows that

$$(\Phi(\sum_{k=1}^{n} f_k))^q \leq \sum(\Phi(f_k))^q$$

for such $\{f_n\}$.

Let Γ_0 be another space, and G be a class of subsets of Γ_0 such that $\Gamma_1, \Gamma_2, \ldots \in G$ implies $\bigcup_{n} \Gamma_n \in G$ and that $\Gamma \in G$ and $\Gamma' \subset \Gamma$ imply $\Gamma' \in G$. We shall say that a property holds G-a.e. on $\Gamma \subset \Gamma_0$ if the exceptional set belongs to G. For each $f \in F$ suppose a non-negative function $T_f(\gamma)$ is defined G-a.e. on Γ_0, and assume that, for any $f_1, f_2 \in F$ and $c \geq 0$, $T_{cf_1} = cT_{f_1}$ and $T_{f_1 + f_2} = T_{f_1} + T_{f_2}$ hold and $f_1 \leq f_2$ implies $T_{f_1} \leq T_{f_2}$, where all relations as to T_{f_1} and T_{f_2} are supposed to hold wherever they are defined.

We shall say that f is G-almost admissible (or simply G-alm. ad.) for $\Gamma \subset \Gamma_0$ when $f \in F$ and $T_f \geq 1$ G-a.e. on Γ. We set

$$G_G(\Gamma) = \inf_{G \text{-alm. ad. } f} \Phi(f)$$
if there is at least one G-alm. ad. f, and otherwise
\[C_G(\Gamma) = \infty. \]
Evidently \(C_G(\Gamma) \leq C_G(\Gamma') \) if \(\Gamma \subseteq \Gamma' \). We observe that \(C_G(\Gamma) = 0 \) for every \(\Gamma \in G \) because \(f \equiv 0 \) is G-alm. ad. and \(\Phi(0) = 0 \).

We shall denote by \(L \) the family of functions \(f \in F \) with finite \(\Phi(f) \).

Theorem 1. — \(C_G(\Gamma) = 0 \) if and only if there exists \(f \in L \) such that \(T_f = \infty \) G-a.e. on \(\Gamma \).

Proof. — The if part follows from the definition of \(C_G \) and the properties of \(\Phi \) and \(T_f \). To prove the only-if part take \(f_n \in F \) and \(\Gamma_n \in G \) for each \(n \) so that \(T_{f_n} \geq 1 \) on \(\Gamma - \Gamma_n \) and \((\Phi(f_n))^q \leq 2^{-n} \), and set \(f = \sum_n f_n \). Then \(f \in F \) and
\[(\Phi(f))^q \leq \sum(\Phi(f_n))^q \leq 1. \]

We have
\[T_f(\gamma) \geq \sum_{k=1}^m T_{f_k}(\gamma) \geq m \]
for every \(\gamma \in \Gamma - \bigcup_n \Gamma_n \) and \(m \) so that \(T_f(\gamma) = \infty \) for every \(\gamma \in \Gamma - \bigcup_n \Gamma_n \). Since \(\bigcup_n \Gamma_n \in G \), our theorem is proved.

Lemma 1. — \(\left(C_G \left(\bigcup_n \Gamma_n \right) \right)^q \leq \Sigma(C_G(\Gamma_n))^q \).

Proof. — We may assume that \(\Sigma(C_G(\Gamma_n))^q < \infty \). Given \(\varepsilon > 0 \), let \(f_n \) be G-alm. ad. for \(\Gamma_n \) such that
\[(\Phi(f_n))^q \leq (C_G(\Gamma_n))^q + \varepsilon 2^{-n}. \]
By our assumption on \(\Phi \), \(f = \sum f_n \in F \) and
\[(\Phi(f))^q \leq \Sigma(\Phi(f_n))^q. \]
Evidently \(f \) is G-alm. ad. for \(\bigcup_n \Gamma_n \) so that
\[(C_G(\bigcup \Gamma_n))^q \leq (\Phi(f))^q \leq \Sigma(\Phi(f_n))^q \leq \Sigma(C_G(\Gamma_n))^q + \varepsilon. \]
This gives the required inequality.
LEMMA 2. — Suppose \(f \in F \) satisfies \(T_f \geq 1 \) on \(\Gamma - \Gamma' \), where \(C_G(\Gamma') = 0 \). Then \(C_G(\Gamma) \leq \Phi(f) \).

Proof. — By Theorem 1 there exist \(f' \in L \) and \(\Gamma'' \in G \) such that \(T_f = \infty \) on \(\Gamma' - \Gamma'' \). For any \(\varepsilon > 0 \) we have \(T_{f+\varepsilon f'} \geq 1 \) on \(\Gamma - \Gamma'' \), and hence

\[
C_G(\Gamma) \leq \Phi(f + \varepsilon f') \leq \{(\Phi(f))^q + (\varepsilon^p \Phi(f'))^q\}^{1/q} \to \Phi(f)
\]
as \(\varepsilon \to 0 \). Thus \(C_G(\Gamma) \leq \Phi(f) \).

THEOREM 2. — Denote \(\{\Gamma^* \subset \Gamma_0; C_G(\Gamma^*) = 0\} \) by \(G_0 \). Then

\[
C_{G_0}(\Gamma) = C_G(\Gamma)
\]
for any \(\Gamma \subset \Gamma_0 \).

Proof. — We observe that \(\Gamma_1, \Gamma_2, \ldots \in G_0 \) implies \(\bigcup \Gamma_n \in G_0 \) in virtue of Lemma 1 and that \(\Gamma \in G_0 \) and \(\Gamma' \subset \Gamma \) imply \(\Gamma' \in G_0 \). Since \(G \subset G_0 \), \(C_{G_0}(\Gamma) \leq C_G(\Gamma) \). Assume that \(C_{G_0}(\Gamma) < \infty \), and take \(f \in F \) such that \(T_f \geq 1 \) on \(\Gamma - \Gamma' \) where \(\Gamma' \in G_0 \). By Lemma 2 \(C_G(\Gamma) \leq \Phi(f) \).

Because of the arbitrariness of \(f \) we derive

\[
C_G(\Gamma) \leq C_{G_0}(\Gamma).
\]
The equality now follows.

THEOREM 3 (cf. [2], Theorem 4). — Each of the following statements implies the succeeding one.

(i) \(T_{f_n} \to T_f \) in \(C_G \), namely, for any \(a > 0 \),

\[
C_G(\{\gamma \in \Gamma_0 - \Gamma; |T_{f_n}(\gamma) - T_f(\gamma)| \geq a\}) \to 0 \text{ as } n \to \infty,
\]
where \(\Gamma \in G \) and all \(T_{f_n} \) and \(T_f \) are defined on \(\Gamma_0 - \Gamma \); \(-\infty - -\infty \) is set to be 0 if it happens for \(T_{f_n} - T_f \).

(ii) We can find \(\{f_{nk}\} \) with the property that, given \(\varepsilon > 0 \), there exists \(\Gamma' \subset \Gamma_0 \) with \(C_G(\Gamma') < \varepsilon \) such that \(T_{f_{nk}} - T_f \to 0 \) uniformly on \(\Gamma_0 - \Gamma' \).

(iii) For the sequence \(\{f_{nk}\} \) in (ii), \(T_{f_{nk}} \to T_f \) on \(\Gamma_0 - \Gamma'' \), where \(C_G(\Gamma'') = 0 \).
Proof. — (i) → (ii). There exist \(\{f_{n_k}\} \) and \(\{\Gamma_k\} \) in \(\Gamma_0 \) such that, for each \(k, \Gamma_k \supset \Gamma, \) \((C_G(\Gamma_k))^q \leq 2^{-k} \) and

\[
|T_{f_{n_k}} - T_f| \leq \frac{1}{k} \quad \text{on} \quad \Gamma_0 - \Gamma_k.
\]

Given \(\varepsilon > 0, \) choose \(k_0 \) so that \(2^{-k_0+1} < \varepsilon^q. \) We see that

\[
T_{f_{n_k}} - T_f \to 0 \quad \text{uniformly on} \quad \Gamma_0 - \bigcup_{k=k_0}^\infty \Gamma_k,
\]

and

\[
\left(C_G \left(\bigcup_{k=k_0}^\infty \Gamma_k \right) \right)^q \leq \sum_{k=k_0}^\infty (C_G(\Gamma_k))^q \leq \varepsilon^q
\]

by Lemma 1. This establishes (i) → (ii).

(ii) → (iii) is evident.

Now, let \(\Psi(f, g) \) be a functional on \(F \times F \) such that, for any \(f_1, f_2 \in F, \) there exists \(\tilde{f} \in F \) satisfying \(\Phi(\tilde{f}) \leq \Psi(f_1, f_2) \) and \(|T_{f_i} - T_{\tilde{f}}| \leq T_{\tilde{f}} \) \(G \)-a.e. on \(\Gamma_0. \) Then we have

Theorem 4. — For all \(f_1, f_2 \in F \) and \(0 < a < \infty \) we have

\[
C_G(\{ \gamma \in \Gamma_0 - \Gamma; |T_{f_i}(\gamma) - T_{\tilde{f}}(\gamma)| \geq a\}) \leq a^{-p}\Psi(f_1, f_2),
\]

where \(\Gamma \in G \) is chosen so that both \(T_{f_i} \) and \(T_{\tilde{f}} \) are defined on \(\Gamma_0 - \Gamma. \)

Proof. — Denote \(\{ \gamma \in \Gamma_0 - \Gamma; |T_{f_i}(\gamma) - T_{\tilde{f}}(\gamma)| \geq a\} \) by \(\Gamma'. \) By our assumption there exists \(\tilde{f} \in F \) such that \(\Phi(\tilde{f}) \leq \Psi(f_1, f_2) \) and \(|T_{f_i} - T_{\tilde{f}}| \leq T_{\tilde{f}} \) \(G \)-a.e. on \(\Gamma_0. \) Evidently \(\tilde{f}/a \) is \(G \)-alm. ad. for \(\Gamma' \) so that

\[
C_G(\Gamma') \leq \Phi \left(\frac{\tilde{f}}{a} \right) \leq a^{-p}\Psi(f_1, f_2).
\]

Hereafter we assume that the relation

\[
\limsup_{n, m \to \infty} \left\{ \frac{\Phi(f_n) + \Phi(f_m)}{2} - \Phi \left(\frac{f_n + f_m}{2} \right) \right\} \leq 0
\]

for \(\{f_n\} \subset F \) implies the existence of \(f \in F \) such that \(\Psi(f_n, f) \to 0 \) and \(\Phi(f_n) \to \Phi(f). \)
Theorem 5. — If $C_G(\Gamma) < \infty$, then there exist $f \in F$ and Γ' with $C_G(\Gamma') = 0$ such that $T_f \geq 1$ on $\Gamma - \Gamma'$ and $\Phi(f) = C_G(\Gamma)$.

Proof. — Choose f_1, f_2, \ldots G-alm. ad. for Γ so that $\Phi(f_n) \to C_G(\Gamma)$. Then $(f_n + f_m)/2$ is G-alm. ad. for Γ, and hence $\Phi((f_n + f_m)/2) \geq C_G(\Gamma)$. Therefore

$$\limsup_{n, m \to \infty} \left\{ \frac{\Phi(f_n) + \Phi(f_m)}{2} - \Phi\left(\frac{f_n + f_m}{2}\right) \right\} \leq 0.$$

By our assumption there exists $f \in F$ such that $\Phi(f_n, f) \to 0$ and $\Phi(f_n) \to \Phi(f)$ as $n \to \infty$. Choose $\Gamma' \in G$ so that $T_{f_n} \geq 1$ on $\Gamma - \Gamma'$ for every n. In view of (i) \to (iii) of Theorem 3 and Theorem 4 we find $\{f_n\}$ and $\Gamma'' \subset \Gamma$ with $C_G(\Gamma'') = 0$ such that

$$T_f = \lim_{k \to \infty} T_{f_{nk}} \geq 1 \text{ on } \Gamma - \Gamma''.$$

We have $\Phi(f) = \lim_{n \to \infty} \Phi(f_n) = C_G(\Gamma)$.

Theorem 6. — If $\Gamma_n \uparrow \Gamma$, then $C_G(\Gamma_n) \uparrow C_G(\Gamma)$.

Proof. — Denote $\lim C_G(\Gamma_n)$ by C. Clearly $C \leq C_G(\Gamma)$.

Hence it suffices to establish $C_G(\Gamma) \leq C$. We may assume that $C < \infty$. Choose f_n G-alm. ad. for Γ_n so that $\Phi(f_n) \to C$. If $m > n$, then f_m and hence $(f_n + f_m)/2$ is G-alm. ad. for Γ_n. Therefore $\Phi((f_n + f_m)/2) \geq C_G(\Gamma_n)$. As in the proof of Theorem 5 we find $f \in F$ and Γ' with $C_G(\Gamma') = 0$ so that $T_f(\gamma) \geq 1$ on $\Gamma - \Gamma'$ and $\Phi(f_n) \to \Phi(f)$ as $n \to \infty$.

By Lemma 2 $C_G(\Gamma) \leq \Phi(f)$. Hence

$$C_G(\Gamma) \leq \Phi(f) = \lim_{n \to \infty} \Phi(f_n) = C.$$

From this theorem we derive immediately

Theorem 7. — If $C_G(\Gamma' \cup \Gamma'') \leq C_G(\Gamma') + C_G(\Gamma'')$ for any Γ', Γ'', then

$$C_G\left(\bigcup_{n} \Gamma_n\right) \leq \sum_{n} C_G(\Gamma_n).$$
Remark. — If $\max (f_1, f_2)$ belongs to F and
$$\Phi (\max (f_1, f_2)) \leq \Phi (f_1) + \Phi (f_2)$$
whenever $f_1, f_2 \in F$, then $C_G(\Gamma_1 \cup \Gamma_2) \leq C_G(\Gamma_1) + C_G(\Gamma_2)$. It suffices to show $C_G(\Gamma_1 \cup \Gamma_2) \leq \Phi (f_1) + \Phi (f_2)$ whenever $C_G(\Gamma_i)$ is finite and f_i is G-alm. ad. for Γ_i, $i = 1, 2$. This is actually true because $f = \max (f_1, f_2)$ is G-alm. ad. for $\Gamma_1 \cup \Gamma_2$ so that
$$C_G(\Gamma_1 \cup \Gamma_2) \leq \Phi (f) \leq \Phi (f_1) + \Phi (f_2).$$

2. Examples.

Let Ω be a general space. Hereafter take as Γ_0 the class M_0 of all non-negative measures defined on a σ-field E of sets in Ω, and let F be a family of non-negative E-measurable functions on Ω such that $c f \in F$ and $f_1 + f_2 \in F$ whenever $c \geq 0$ and $f_1, f_2 \in F$. For every $f \in F$ we define $T_f(\mu)$ to be $\int f \, d\mu$. We take $G = \emptyset$ and denote $C_G(\Gamma)$ by $C(\Gamma)$ for $\Gamma = M \subseteq M_0$.

Example 1. — Let F consist of all non-negative E-measurable functions. With a fixed $m \in M_0$ set
$$\Phi (f) = \int f^p \, dm \quad \text{for} \quad f \in F$$
and $\Psi (f_1, f_2) = \int |f_1 - f_2|^p \, dm$ for $f_1, f_2 \in F$ if
$$\int f_1^p \, dm + \int f_2^p \, dm < \infty.$$
If
$$\int f_1^p \, dm + \int f_2^p \, dm = \infty,$$
then define $\Psi (f_1, f_2)$ to be ∞. Then Ψ satisfies the conditions required in § 1. We call $C(\Gamma)$ the module of Γ of order p. Its reciprocal is called the extremal length of Γ of order p. In this case we have $\sup f_n \in F$ for $f_1, f_2, \ldots \in F$ and
$$\Phi \left(\sup f_n \right) \leq \Sigma \Phi (f_n).$$
We obtain the subadditivity from this immediately without appealing to Theorem 7.

Example 2. — Let F, Φ and Ψ be as above. Let $k(x, e) \geq 0$ be an E-measurable function of x on Ω for every fixed
e \in E, and a measure for every fixed \(x \in \Omega \). Set
\[v_\mu(e) = \int k(x, e) \, d\mu(x) \quad \text{for} \quad \mu \in M_0, \]
and \(N_M = \{v_\mu; \mu \in M\} \). We may consider \(C(N_M) \). This gives a generalization of \(C_{K; \Phi^p}(A) \) referred to in the introduction when \(M = \{\delta_x; x \in A\} \) and
\[k(x, e) = \int k(x, y) \, d\mu_0(y), \]
where \(A \) is a subset of \(\mathbb{R}^n \), \(\delta_x \) is the unit point measure at \(x \), \(k(x, y) \geq 0 \) is \(E \)-measurable for every fixed \(x \) and \(\mu_0 \) is a fixed measure in \(M_0 \). As in Example 1, (1) follows immediately.

Example 3. — Let \(\Omega \) be an open set in \(\mathbb{R}^n \), \(E \) be the Borel class of sets in \(\Omega \), \(m \) be the Lebesgue measure, \(F \) consist of (some) non-negative \(p \)-precise functions \(f \) in \(\Omega \), take \(\Phi(f) = \int |\text{grad} f|^p \, dm \), and define \(\Psi(f_1, f_2) \) by
\[\int |\text{grad} (f_1 - f_2)|^p \, dm. \]
See [3] for \(p \)-precise functions and properties of these functions. In order to assure \(\sum f_n \in F \) for every \(\{f_n\} \subset F \) satisfying \(\int |\text{grad} (f_{n+1} + \cdots + f_m)|^p \, dm \to 0 \), we assume that there is a family, with positive module of order \(p \), of curves in \(\Omega \) such that every \(f \in F \) tends to 0 along \(p \)-a.e. curve of the family. Then all the conditions required in the beginning of § 1 are satisfied. If \(\max (f_1, f_2) \in F \) for any \(f_1, f_2 \in F \), then (1) holds because \(|\text{grad} (\max (f_1, f_2))| = |\text{grad} f_1| \) or \(|\text{grad} f_2| \) \(m \)-a.e. so that \(\Phi(\max (f_1, f_2)) = \Phi(f_1) + \Phi(f_2) \). Consider the case when the module of order \(p \) of the family \(A \) of curves terminating at \(\partial \Omega \) is positive, \(M = \{\delta_x; x \in A \subset \Omega\} \) and \(F \) consists of all non-negative \(p \)-precise functions in \(\Omega \) tending to 0 along \(p \)-a.e. curve of \(A \). Then the capacity is called the \(p \)-capacity of \(A \) (relative to \(\Omega \)).

Example 4. — Let \(\Omega \) be a topological space, and \(E \) be the Borel class of sets in \(\Omega \). Let \(F \) be as in the beginning of this section, and \(\Phi \) be as in § 1. Denote by \(S \) the family of lower semicontinuous functions in \(\Omega \), and define \(c(K) \)
for every compact set K by $\inf \Phi(f)$ for $f \in F \cap S$ satisfying $f \geq 1$ on K. Let us see that $c(K_n) \downarrow c(K)$ if a sequence \{K_n\} of compact sets decreases to K. Suppose $f \in F \cap S$ satisfies $f(x) \geq 1$ on K. Since f is lower semicontinuous, $f/(1 - 1/n) > 1$ for each $n \geq 2$ on an open set ω containing K. There exists m_0 such that $K_{m_0} \subset \omega$, and hence

$$c(K) \leq \lim_{m \to \infty} c(K_m) \leq \Phi(f/(1 - 1/n))$$

$$\leq (1 - 1/n)^{-\beta} \Phi(f) \to \Phi(f)$$

as $n \to \infty$. The arbitrariness of f yields $c(K) = \lim_{m \to \infty} c(K_m)$.

This together with Theorem 6 shows that $C(M_A)$ with $M_A = \{\varepsilon_x; x \in A\}$ is a true capacity if it is shown that

$$c(K) = C(M_K)$$

for every compact set K; cf. [1; Part II, Chap. 1]. This is the case, for example, when $\Omega = R^n (n \geq 3)$, F consists of all Newtonian potentials of non-negative measures with finite energy and $\Phi(f) = \int |\text{grad} f|^2 \, dm$; the 2-capacity is equal to the Newtonian outer capacity. Evidently all $f \in F$ are superharmonic.

Another example of such a case is found in [4]. See [3] too.

BIBLIOGRAPHY

Manuscrit reçu le 25 janvier 1975.

Makoto OHTSUKA,
Department of Mathematics
Faculty of Science
Hiroshima University
Hiroshima (Japan).