On vector measures
Annales de l'Institut Fourier, Tome 25 (1975) no. 3-4, pp. 139-161.

Soit l’espace de Banach des mesures réelles sur une tribu R, son dual, E un espace localement convexe quasi-complet, E son dual et μ une mesure sur R à valeurs dans E. On démontre que pour chaque θ il existe un élément θdμE tel que x μ,θ= θ d μ , x pour tout x E . Si (θ i ) iI est une famille filtrante décroissante dans , dont l’infimum est 0, alors le filtre des sections de θ i d μ i I converge vers 0.

Let be the Banach space of real measures on a σ-ring R, let be its dual, let E be a quasi-complete locally convex space, let E be its dual, and let μ be an E-valued measure on R. If is shown that for any θ there exists an element θdμ of E such that x μ,θ= θ d μ , x for any x E and that the map

θθdμ:E

is order continuous. It follows that the closed convex hull of μ(R) is weakly compact.

@article{AIF_1975__25_3-4_139_0,
     author = {Constantinescu, Corneliu},
     title = {On vector measures},
     journal = {Annales de l'Institut Fourier},
     pages = {139--161},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {25},
     number = {3-4},
     year = {1975},
     doi = {10.5802/aif.576},
     zbl = {0286.46044},
     mrnumber = {53 #6301},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.576/}
}
TY  - JOUR
AU  - Constantinescu, Corneliu
TI  - On vector measures
JO  - Annales de l'Institut Fourier
PY  - 1975
SP  - 139
EP  - 161
VL  - 25
IS  - 3-4
PB  - Institut Fourier
PP  - Grenoble
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.576/
DO  - 10.5802/aif.576
LA  - en
ID  - AIF_1975__25_3-4_139_0
ER  - 
%0 Journal Article
%A Constantinescu, Corneliu
%T On vector measures
%J Annales de l'Institut Fourier
%D 1975
%P 139-161
%V 25
%N 3-4
%I Institut Fourier
%C Grenoble
%U https://aif.centre-mersenne.org/articles/10.5802/aif.576/
%R 10.5802/aif.576
%G en
%F AIF_1975__25_3-4_139_0
Constantinescu, Corneliu. On vector measures. Annales de l'Institut Fourier, Tome 25 (1975) no. 3-4, pp. 139-161. doi : 10.5802/aif.576. https://aif.centre-mersenne.org/articles/10.5802/aif.576/

[1] N. Dunford and J. T. Schwartz, Linear operators Part. I., Interscience Publishers Inc., New York, 1958. | Zbl

[2] J. Hoffmann-Jørgensen, Vector measures, Math. Scand., 28 (1971), 5-32. | Zbl

[3] J. Labuda, Sur quelques généralisations des théorèmes de Nikodym et de Vitali-Hahn-Saks, Bull. Acad. Pol. Sci. Math., 20 (1972), 447-456. | MR | Zbl

[4] J. Labuda, Sur le théorème de Bartle-Dunford-Schwartz, Bull. Acad. Pol. Sci. Math., 20 (1972), 549-553. | MR | Zbl

[5] D. Landers and L. Rogge, The Hahn-Vitali-Saks and the uniform boundedness theorem in topological groups, Manuscripta Math., 4 (1971), 351-359. | MR | Zbl

[6] A. P. Robertson, Unconditional convergence and the Vitali-Hahn-Saks theorem, Bull. Soc. Math. France, Mémoire 31-32 (1972), 335-341. | Numdam | MR | Zbl

[7] E. Thomas, L'intégration par rapport à une mesure de Radon vectorielle, Ann. Inst. Fourier 20, 2 (1970), 55-191. | Numdam | MR | Zbl

[8] I. Tweddle, Vector-valued measures, Proc. London Math. Soc., 20 (1970), 469-485. | MR | Zbl

[9] L. Drewnowski, On control submeasures anal measures, Studia Math., 50 (1974), 203-224. | MR | Zbl

[10] K. Musiak, Absolute continuity of vector measures, Coll. Math., 27 (1973), 319-321. | MR | Zbl

Cité par Sources :