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ON VECTOR MEASURES
by Corneliu CONSTANTINESCU

Dédié a Monsieur M. Brelot a I’occaston
de son 70¢ anniversaire.

The aim of this paper is to prove some properties concer-
ning the measures which take their values in Hausdorff
locally convex spaces. &-rings of sets rather than o-rings
of sets will be used and a certain regularity of the measures
will be assumed 1n order to include the Radon measures on
Hausdorff topological spaces in these considerations.

A ring of sets is a set R such that for any A, BeR we
have A A B, A nBeXR. A ring of sets is called a o-ring
of sets (resp 3-ring of sets) if the union (resp. the intersection)
of any countable family in R belongs to R. Any o-ring of
sets 1s a d-ring of sets. Let G be Hausdorff topological
additive group and let R be a ring of sets. A G-valued
measure on M is a map p of RN into G such that for any
countable family (A,),er of pairwise disjoint sets of R
whose union belongs to R, the family (1(A,)).er 1s summable
and its sum is u <U AL>. Let & be a set and let & be

tel

the set of finite unions of sets of & (then @ e®f"). For
any A e we denote by F(A, & the filter on R gene-
rated by the filter base

({BeR|K =B < A}Ke&, K < A).

A G-valued measure p on R will be called K-regular if
for any Ae®R, p converges along FA, & to w(A).
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Any G-valued measure on R is R-regular. A set AeR
is called a null set for p if pw(B) =0 for any Be R with
B < A. Let R be a ring of sets, let G, G be Hausdorff
topological additive groups, and let p (resp p’) bea G-valued
(resp. G'valued) measure on R. We say that u s absolutely
continuous with respect to p' (in symbols p < u') if any
null set for p’ is a null set for p. For any real valued measure
# on a o-ring of sets | we denote by |p| the supremum
of o and — p in the vector lattice of real valued measures
on M. If & 1is a set such that p is K-regular then |y|
1s K-regular.

ProrositioNn 1. — Let G be a topological additive group
whose one point sets are Gy-sets (G is therefore Hausdorff)
and let (z)e1 be a family in G such that any countable sub-
family of it is summable. Then there exists a countable subset J

of 1 such that z, =0 for any e I\J.

Let (U,),ex be a sequence of 0-neighbourhoods in G
whose intersection is equal to {0}. The sets

Jo:={vellz ¢ Uy}
being finite for any n € N the set J: = UJ,, is countable.

n€EN
For any ' e INJ we get z, erjU,l and therefore z, = 0. &
n€EN
Prorosition 2. — Let G be a topological additive group

whose one point sets are Gg-sets, let R be a o-ring of sets, and
let p be a G-valued measure on R. Then there exists A e R
such that w(B) =0 forany BeR with B n A = @.

Let us denote by X the set of sets & of pairwise disjoint
sets of R such that u(S) # 0 for any Se&. It is obvious
that X is inductively ordered by the inclusion relation.
By Zorn’s theorem there exists a maximal element &, € Z.
Then any countable subfamily of the family (u(S))ses, 1s
summable. By the preceding proposition &, is countable.

We set
A:=Us.

SES,

Then AeR. Let BeR with BnA=g. If pB) # 0
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then &, U {B} € Z and this contradicts the maximality
of &,. N

Taeorem 3. — Let T be a Hausdorff topological space
possessing a dense c-compact set, let E be a locally convex
space whose one point sets are Gy-sets, and let €(T, E) be the
vector space of continuous maps of T into E endowed with
the topology of pointwise convergence. Let further R be a
o-ring of sets, let K be a set, and let p be a RK-regular
(T, E)-valued measure on R. Then there exists a positive 8-
regular real valued measure v on R such that p s abso-
lutely continuous with respect to v.

Assume first E =R and let us denote by @%x(T) the
vector space of continuous real functions on T endowed
with the topology of compact convergence. Since T possesses
a dense o¢-compact set the one point sets of @g(T) are
Gj;-sets.

Let us denote for any teT by p, the map

Ar— ((A)(): R - R.

Then p, is a f-regular real valued measure on R for any
t € T. Assume that for any countable subset M of T there
exists A e which is a null set for any p, with teM
and is not a null set for u. Let «,; be the first uncountable
ordinal number. We construct by transfinite induction a
family ()<, in T and a decreasing family (A¢)io,, in R
such that we have for any £ < o,:

a) Az is a null set for any p, with 7 < §&;
b) any set A € R is a null set for p if it is a null set for
any u, with % <& and if A N A= g;

c) m A N\A; i1s not a null set for p.
n<g

Assume that the families were constructed up to & < ;.
By the hypothesis of the proof there exists a set of ® which
is a null set for any p, with % < £ and which is not a null
set for pu. Hence there exists B e®R and tr€T such that B
1s a null set for any u,, with n < £ and such that

l”ta(B) % O'
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Let R’ be the set of sets of | which are null sets for any
we, with = < & Then ' is a o-ring of sets and by [7]
Theorem I1.4 (*) the map R — %R(T) induced by po1s a
measure. By the preceding proposition there exists C e R’
such that any De®R’ with C n D = @ 1is a null set for p.

We set
Ar:=C m(ﬂAn>.
n<g

a) is obviously fulfilled. Let Ae®R with A NnAr= g.
Then ANC e R’ and it is therefore a null set for p. For
any 7 < & the set AN\A, is a null set for ¢ by the hypo-
thesis of the induction. Hence A 1is a null set for p and
b) 1s fulfilled. Since B N C is a null set for p, we get

w(BNC) # 0.

For any % < £ the set (BNC)\A, is a null set for w, for
any ¥ < w and by the hypothesis of the induction

(B\CINA,
1s a null set for p. It follows that (B\C)\r—] A, is anull
set for p and therefore n<k

*"z<(B\C (O An\AE>> = W < (B\C) (QA >)
n< n<

We deduce that mAn\AE is not a null set for p which
proves c). 1<t

Again by [7] Theorem Il 4 any countable subfamily of
the family ( <ﬂA \Ag)) 1s summable in €4(T) and

E<wy
this contradicts Proposition 1. Hence there exists a sequence

(t.)sen in T such that any set of R is a null set for p if
it is a null set for any p, with neN. We set

a,: = sup |u,[(A) <
AeR

(*) Or [8] Theorem 7.
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([1], IIT 4.5). The map
1
A3 o lwl(A): % >R

n€N
1s a positive R-regular real valued measure on R and p
1s absolutely continuous with respect to it.

Let us treat now the general case. Let E’ be the dual
of E endowed with the o(E’, E)-topology and let (U,),ex
be a sequence of closed convex 0-neighbourhoods in E
whose intersection is equal to {0} and sucht hat

% U, forany neN.

For any neN let U? be the polar set of U, in E’. Then,
for any neN, U3 is a compact set of E' and UU?, 1s a

neN
dense set in E’. Let T’ be the topological (disjoint) sum
of the sequence (T X Uj),ex of topological spaces. Then T’
1s a Hausdorff topological space possessmg a dense c-compact
set. Let 4(T’) be the vector space of continuous real functions
on T’ endowed with the topology of pointwise convergence.
For any A e R let us denote by A(A) the real function
on T’ equal to

(t, @) — <(@(A)(), > : T x UL —>R

U ©

on T x UJ. It is easy to see that A(A) € 4(T') and that A
1s a K-regular measure on R with values in ¥(T'). Let
AeR be a null set for 2 and let teT. Since (w(A))(¢)

vanishes on ‘ ,Ug and since this set 1s dense in E’' we

nEN
deduce (u(A))(¢) = 0. The point ¢ being arbitrary p(A)
vanishes. Hence u 1is absolutely continuous with respect
to A. By the first part of the proof there exists a positive
f-regular real valued measure v on R such that A 1s
absolutely continuous with respect to v. Then p 1s abso-
lutely continuous with respect to v. W

Remark. For =R this result could be deduced from
[4] Theorem 2.2 and [3] Theorem 2.5. A simpler proof can be
given by using [9] Theorem 2.3 or [10] Theorem 2.
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2. Let R be a 3-ring of sets, let & be a set, let E be
a Hausdorff locally convex space, and let .# be the set of
K-regular E-valued measures on ®. Then # is a subspace
of the vector space E®. For any continuous semi-norm p
on E and for any o-ring of sets R’ contained in R the
map

w+—> sup p(u(A)): # —R,
AeR!
([1], IIT 4.5) is a semi-norm on .#. We shall call the topo-
logy on .# generated by these semi-norms the semi-norm
topology of #. If R i1sa o-ringand E 1s R then the semi-
norm topology on .# 1s defined by the lattice norm

w > sup [u|(A): 4 >R,
AeR

and # endowed with this norm is an order complete Banach
lattice.

Let R be a o-ring of sets and let T(NR): :UA. A real
AeR
function f on T(R) 1s called R-measurable if for any posi-

tive real number « the sets {z|f(x) > «}, {z|f(z) < — a}
belong to R. Let p be a real valued measure on R. £ (u)
will denote the set of JR-measurable p-integrable real functions
on T(M). Let f be a subset of £'(n) such that [ =f"

w-almost everywhere and therefore

Jrde=[rd

for any f', f" e f. We set

ffdv«:fo’ ®,

where f' is an arbitrary function of f. Lil(ux) and L*(w)
will denote the usual Banach lattices and | [}, | [& will
denote their norms respectively. Any element of L*(p) is

a subset of #(n) ([1], III 4.5).

ProrosiTion 4. — Let R be a o-ring of sets, let & be
a set, let M be the Banach lattice of R-regular real valued
measures on R and let

f::%fe IIWLQO(P')IP-<<V=>fv < ful-
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Then # s a subvector lattice of [][ L=(r) such that for any
n€ b
subset of F which possesses a supremum in [] L=(u) this

ne b
supremum belongs to #. For any fe F we have

11 : = sup £z < w
and the map

1s a lattice norm. F endowed with it is a Banach lattice. For
any feF we denote by o(f) the map

ELI———)-ffy'd(J.:./{—éR.

Then o(f) belongs to the dual of # for any fe F and ¢
is an isomorphism of Banach lattices of # onto the dual of .

Let f, ge#, let «e€R, and let p, ve # such that
w <v. Then f, = f,, g < g, and therefore

f+ev=>FH+s < fp"l‘gp:(f‘f‘ g)gu
(af)y = of, = “pr = (“f)p-

This shows that # is a vector subspace of [ L*(u).

wedb
Let ¢ be a subset of # possessing a supremum f in

1—[% L*(x) and let p, v e # such that p < v. Then for any
WE.J

ge¥% we have g, < g, and therefore

f, = sup g, < sup 8 — fp'
geg yeg

Hence # is a subvector lattice of ][] L*(r) such that for
weJdb
any subset of #, which possesses a supremum in

II L7(w),

e db

this supremum belongs to #.
Let fe#. Assume

sup [fulg = .
pe b
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Then there exists a sequence (u,),en 1n # such that
lim ufp’n“ﬁ'n = .
n>x

We set

we = . |tk
C o aen 27

Then u, < p for any neN and therefore f, = f,. We

get
el d, < 1fults

and this leads to the contradictory relation

0 = 1::2 el %, < Ifuli < .

Let f, ge #, and let « e R. We have
If + 8l = sup Ife + gul@ < sup (Ifel &+ lgalE) < 11 + lgl,

af] = sup Joflf i sup [ 1fulf = 11,

f“0<=>(£"€v/”=*||fu"u—0)*:*Hfll =0,
Ifl <lgl=Ifl = sup Ifeli < sup lgul = Ilgll

pe b pe b
Hence

| fr—Ifl: # >R,
is a lattice norm.
Let fe #, let u,ve #, and let « € R. Then

fiul+iv < fu O fv < forv fu < fap
and therefore
@)+ ) = [ furmde + )
f fureiv di + f frre & = (@(F)(e) + (2())),
(@) (o) = [ fudlaw) = a [ fidp = a(o()(w).

This shows that ¢(f) 1s linear. From

M@ = [ fudu| < 1flzlel < If11u]

we get le(H)I < [fl. Hence ¢(f) belongs to the dual of .
It 1s obvious that @ 1s an 1n]ect10n and that ¢ maps the
positive elements of & into positive linear forms on ..

Let us prove now that ¢ 1s a surjection. Let 0 be a conti-
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nuous linear form on .# and let p e #. For any ge L(u)
we denote by g.u the map Av——»fA gdp: R —>R. Then
g.we€# and the map g+——0(g.p): L(p) > R 1s a conti-

nuous linear form on Li(u). Hence there exists f, € L™(u)
such that |fu]g < 0] and

w) =ffpgdsl»

for any gel'(p). Let @, ve# such that pu <v. By
Lebesgue-Radon-Nikodym theorem there exists h e L(v)
such that p = h.v. We get for any ge Li(p), ghe Li(v)
and

[ hgdu =0(g.u) =0(gh.v) = [fighdv = [ fig du.

This shows that f, < f,. Hence f:= (fu)uean € # and it
1s clear that ¢(f) =6. Moreover

Il = sup Ifellg < 18].

pedb

Hence ¢ 1s an isomorphism of normed vector lattices. We
deduce that # is a Banach lattice. l

Proposition 5. — Let R be a 8-ring of sets and let R,
R: be o-ring of sets contained in R. Then there exists a o-
ring of sets R, contained in R and containing R, U R, and
such that any set of R which is contained in a set of R, belongs
to Ro.

Let us denote by $R, the set of A e R for which there
exists (B, C) e Ry, X R, such that A =« B U C. It is easy
to check that R, possesses the required properties. B

PropositioNn 6. — Let R be a 3-ring of sets, let & be
a set, and let R' be a o-ring of sets contained in R and
such that any set of R contained in a set of R’ belongs to R'.
Let further E be a Hausdorff locally convex space, let M
(resp. M,) be the vector space of K-regular E-valued measures
on RN (resp. R') endowed with the semi-norm topology, and
let. M (resp. Mg) be its dual. For any pe# we have
w|R' € #, and the map o

pr—p|R > A,
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is linear and continuous. Let p be a continuous semi-norm on E,
let. & (resp. A,) be the set of we . # (resp. u e My) such
that

sup p(u(A)) < 1,

AedR
let. #° (resp. A7) be its polar set in M' (resp. M,) and
let o' : My— M' bethe adjoint map of . Then ¢’ (N4 = O

It 1s obvious that p e .# 1implies u|R € #,, that ¢ is
linear and continuous, and that ¢(4) < #,. Hence

¢'(HT) = A

Let 6 e #° and let ve #, For any AeR we denote
by vi the map

B v(A NB): R —E.

It 1s immediate that v, € #. Let F be the quotient locally
convex space E[p~1(0) and let u be the canonical map
E —> F. Then the one point sets of F are Gy-sets and wov
is an F-valued measure on R’. By Proposition 2 there exists
A e such that any BeR' with BN A=¢g is a null
set for uov. Let A’ eR', A = A'. For any Be R the set
A’ " BNA N B is a null set for wov and therefore

p(va(B) — v4(B)) = 0.

Hence vy — vy e e for any c > 0. We get 0(vy) = 6(v,).
Hence if § denotes the section filter of R’ ordered by the
inclusion relation then the map

Ar—0(vy): R =R

converges along .

Let 6 € #° With the above notations we set for any
ve Uy,

0o(v) : = lim 0(v,).
AT

It is easy to see that 6, is a linear form on #,. If v e &,
then vye/ for any Ae®R’ and therefore |0,(v)] < 1.
It follows 6, e 43 Let pe#. We set v:=o(u). Let A
be a set of R’ such that any BeR' with BnA=g¢g
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1s a null set for wov. Then 64(v) =6(v4). For any Be®R’
we have

p(e(B) — va(B)) = p((B — A N B)) = 0.

Hence p — vy € e#” forany ¢ > 0 and therefore

() = 0(va).
We get

(s @'(80)> = (1), 80> = v, B> = Cva, 6) = (s, 0).
Since p 1s arbitrary 1t follows ¢'(6,) = 6. Hence
(N =" R

Prorosition 7. — Let R be a 3-ring of sets, let & be a
set, let T' be the set of o-rings of sets R’ contained in R
and such that any set of R contained in a set of R' belongs
to W, and let E be a Hausdorff locally convex space. For
any R eT U {R} let #(R') be the vector space of K-
regular E-valued measures on R’ endowed with the semi-
norm topology, let M (R') be its dual, let ox be the map

pi—pR: A(R) > #(R)
(Proposition 6), and let ¢y : M(R') — #(R)' be its adjoint
map. Then

@y = o).

R'er
Let 6 e .#(R). By Proposition 5 there exists R' el
and a continuous semi-norm p on E such that [8(p)] < 1
for any u e #(R) with

sup p(u(A)) < 1.

Aed’
By Proposition 6 there exists 0, € #(R’)’ such that
#ie(8) = 6. W

3. Let R be a 3-ring of sets, let & be a set, let # be
the vector space of &-regular real valued measures on R
endowed with the semi-norm topology, and let #’ be its
dual. Let further E be a Hausdorfl locally convex space,
let E’ be its dual, and let p be a R-regular E-valued



150 CORNELIU CONSTANTINESCU
measure on R. Then for any 2’ € E’; 2/ o u belongs to 4.
If 6 e’ then

{2 op, 60: EE >R
is a linear form on E’. If there exists z € £ such that

(&' op, 8) =<, 2>

for any 2’ € E' we say that 0 1is p-integrable. Then z 1s
uniquely defined by the above relation and we shall denote
it by f@ dp. Any A e R may be considered as an element
of #' namely as the linear form 6, on #

vi—>v(A): # - R.
It i1s easy to see that
A—s0,: R >4

1s an injection, that 6, 1s p-integrable and
[ 0xdp = u(A).

If any 0 € #’ 1is u-integrable we say that the measure p
1s normal. It will be shown in Theorem 10 that if E 1is quasi-
complete then any E-valued measure is normal. If R is
a o-ring of sets then any bounded 3R-measurable real
function [ may be considered as a map 6,

vi—+ffdv:=//l—>R

which obviously belongs to «’. For any normal measure u

we shall write
ffdp.: = fef .

If p 1s a normal measure then 1t may be regarded as a map
0 — f 0du: 4 — E

and, identifying R with a subset of .#’ via the above injec-
tion, this map is an extension of u to #'. If 4 is a set
of normal R-regular E-valued measures on R then, taking
into account the above extensions of the normal measures, it
may be regarded as a set of maps of .#' into E and so we
may speak of the topology on 4 of pointwise convergence
in M.
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We want to make still another remark. If F is another
Hausdorff locally convex space and if u: E - F is a conti-
nuous linear map then for any K-regular E-valued measure
p on R the map u-p 1s a K-regular F-valued measure
on R. Moreover any p-integral 0 € .#' 1s u o p-integral

and
fﬂd(uop.)=u(f6dy.).

PropositioN 8. — Let R be a 3-ring of sets, let K be
a set, let M be the vector space of K-regular real valued mea-
sures on R endowed with the semi-norm topology, and let #'
be its dual. Let further E be a Hausdorff locally convex space,
let. M(E) be the vector space of R-regular E-valued mea-
sures on R endowed with the topology of pointwise conyer-
gence in R, and let & be a compact set of M(E) such that
any measure of A is normal. Then the topologies on 4 of
poiniwise convergence in R or in M' coincide.

Since R may be identified with a subset of #’ we have
only to show that the topology on 4 of pointwise conver-
gence iIn R 1s finer than the topology on A4 of pointwise
convergence in .#'. By Proposition 7 we may assume that R
is a o-ring of sets. Let 6 €.#' and let p be a continuous
semi-norm on E. We denote by E, the normed quotient
space E[p~1(0), by u, the canonical map E — E,, and
by ¢(«, E,) the vector space of continuous maps of A
(endowed with the topology of pointwise convergence in R)
into E, endowed with the topology of pointwise conver-
gence. For any A e®R let A(A) be the map

wi—u,o u(A): &/ - E,.

Then A(A) e 4(#, E,) and it is obvious that A is a &-regu-
lar measure on R with values in ¢(4°, E,). By theorem 3
there exists a &-regular real valued measure v on R
such that A 1s absolutely continuous with respect to v.
By Proposition 4 there exists a bounded $R-measurable real

function [ on l , A such that
AeR
= [fde
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for any R-regular real valued measure p on R which is
absolutely continuous with respect to v. Let E, be the
dual of E,. Then for any a' € E, and for any p e the
map &' ou,ou 1s a K-regular real valued measure on R
absolutely continuous with respect to v. Hence

<x’oupop,,0>=ffd(:c’ o U, o W)
for any p e and for any 2’ € E,. We get

w, ([0du) = [0d(u, o) = [fd(u,ou)

for any pe . Let (f).en be a sequence of step functions
with respect to R converging uniformly to f. Since 4
is compact the set {u(A)ju e #} = E 1s bounded for any

AeR. We deduce that the set {u(A)peAts, AecR} is
bounded ([5], Corollary 6). Hence the sequence

(p,x——-»ff,,dp.:#»E)ueN

of functions on 4 converges uniformly to the function
®— ffdp. : N — K.

The functions of the sequence being continuous with respect
to the topology on 4 of pointwise convergence in R we
deduce that the last function is continuous with respect to
this topology. We deduce further that the map

y.!———»up(f(')dp.):"/V»Ep

is continuous with respect to the topology on 4 of point-
wise convergence in R. Since p 1is arbitrary it follows
that the map

p.i——>fﬂdp.:.A"—>E

1s continuous with respect to this topology. Since 6 1is arbi-
trary the topology on 4 of pointwise convergence in R
is finer than the topology on 4 of pointwise convergence
m 4. 0

CororrLary. — Let R be a c-ring of sets, let & be a set,
and let & be a set of K-regular real valued measures on R
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compact with respect to the topology of poinitwise convergence in R.
Then any sequence in A possesses a convergent subsequence
with respect to this topology.

Let # be the vector space of R-regular real valued mea-
sures on R endowed with the semi-norm topology. By the
proposition, 4" 1is weakly compact in # and the assertion
follows from Sumlian theorem. W

Let X be an ordered set and let Y be a topological space.
We say that a map f: X — Y is order continuous if for any
upper directed subset A of X possessing a supremum
z € X the map [ converges along the section filter of A to
f(z). An ordered set X 1is called order o-complete if any
upper bounded increasing sequence in X possesses a
supremum.

Tueorem 9. — Let E be an order co-complete vector lattice,
let F be a locally convex space, and let u be a linear map
of E nto F. If wu s order continuous with respect to the
weak topology of F then it is order continuous with respect to
the initial topology of F.

Let U be a 0O-neighbourhood in F, let U° be its polar
set in the dual F’ of F endowed with the induced o(F’, F)-
topology, let #(U° (resp. %,(U°) be the vector space of
continuous real functions on U° endowed with the topology
of pointwise convergence (resp. with the topology of uni-
form convergence), and let us denote for any zeE by
f(x) the map

Yy +— (u(z), y'>: U >R

which obviously belongs to #(U°).
Let (z,),ex be an increasing sequence in E with supre-

mum z € E. Then for any M = N (2 (X1 — x,,)) is
mEN

neM
n<m

an upper bounded increasing sequence in E and possesses
therefore a supremum. Since u 1is order continuous with
respect to the weak topology of E it follows that

(f(@upr — Za))nen

1s summable in €(U°). The space U° being compact we
deduce by [7] Theorem II 4 that (f(x,4; — %,)),en 1S sum-
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mable in €,(U°%. Its sum has to be f(x — z,). Hence

(f(xn))n €N

converges uniformly to f(z).

Let now A be an upper directed subset of E with supre-
mum z € E and let § be its section filter. If f does not
map § into a Cauchy filter on %,(U° then it is easy to
construct an increasing sequence (&,),ex In A such that
(f(x,))hen 1s not a Cauchy sequence in %,(U°. Since E 1is
order o-complete and (,),en 1s upper bounded by =z it
possesses a supremum and this contradicts the above consi-
derations. Hence f maps § into a Cauchy filter on %,(U%)
and therefore, by the completeness of %,(U° into a conver-
gent filter on €,(U°. Using again the hypothesis that u
1s order continuous with respect to the weak topology of F
we deduce that f(§) converges to f(z) in %(U° and
therefore in €,(U°. Since U is arbitrary it follows that u
converges along § to wu(x) in the initial topology of F
which shows that wu 1is order continuous with respect to
this topology. B

Let E be alocally convex space, let E' be its dual endowed
with the o(E, E)-topology, and let E be the set of linear
forms y on E’ such that for any o-compact set A of E'

there exists xe€ E such that z and y coincide on A.
We say that E is S-complete if £ = E.

Lemma. — Any quasicomplete locally convex space 1is
3-complete.

Let E be a quasicomplete locally convex space and let

y € B (with the above notations). Let 1l be the neighbour-
hood filter of 0 in E and for any Uell let U° be its
polar set in the dual of E and let Ay be the set of z€ E

such that z and y coincide on ‘ ,nU". It 1s obvious that

n€N
there exists ay € R such that Af; < ayU. Let § be the
filter on E generated by the filter base {Ay|U e ll}. Then
& is a Cauchy filter on E containing the bounded set
ﬂ ayU and converging to y uniformly on the sets U%(U e ll).

Ueu
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Since E i1s quasicomplete ye€ E and therefore E is
3-complete. B

Remark. — I* endowed with its weak topology is sequen-
tially complete and 3-complete but it is not quasicomplete.

Tueorem 10. — Let R be a 3-ring of sets, let & be a set,
let M be the vector space of R-regular real valued measures
on R endowed with the semi-norm topology, and let M' be
its dual endowed with the Mackey ~(#', M)-topology. Let
further E  be a Hausdorff sequentially complete 8-complete
locally convex space, let E' be its dual, let £ be the vector space
of continuous linear maps of #' into E endowed with the
topology of wuniform convergence on the equicontinuous sets
of #', and let #(E) be the vector space of R-regular E-
valued measures on R endowed with the semi-norm topology.
Then for any 6 € 4’ and for any p € M(E) there exists a

unique element fﬂ dp. of E such that
{x' o, 0 =<f6dp., x’>

for any @ € E'. For any ue #(E) the map ¢(u)
60— [6du: 4’ >E

belongs to £ and it is order continuous. ¢ is a linear injec-
tion of M(E) into £ which induces a homeomorphism of
M (E) onto the subspace (M(E)) of £. For any o-ring of
sets RN’ contained in R and for any we #(E) the closed
conyex circled hull of {w(A)|A e R'} s weakly compact in E.

In order to prove the existence of f 0 du we may assume

by Proposition 7 that R 1is a o-ring of sets. Let % be the
Banach space of bounded %R-measurable real functions on

UA with the supremum norm. Since E 1is sequentially
AER
complete we may define in the usual way ffdp. e E for

any fe #. Let A be asubset of E' s-compact with respect
to the o(E', E)-topology. By Theorem 3 there exists v e ./
such that 2’ op < v for any 2 € A. By Proposition 4
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there exists fe # such that

@ op, 0 = [ file o p) =([fdu, )

for any 2’ € A. Since E is 8-complete there exists
y P

f 8dpcE
such that

(&' op, 6>=<f6d(.l., xl>

for any 2’ € E'.

Let we #(E). Itis obvious that {¢(w) is linear and from
the relation defining it, it follows that it is continuous with
respect to the o(#', #) and o(E, E') topologies. We deduce
that ¢(n) belongs to £. From Proposition 4 or from the
theory of Banach lattices we deduce that ¢(u) is order conti-
nuous with respect to the weak topology of E. By the prece-
ding theorem it is order continuous with respect to the initial
topology of E.

It 1s obvious that ¢ 1is linear. Let p e #(E) such that
$(n) =0. Let AeR and let 6 be the map

vi—v(A): # —>R.

Then 0 € #' and we get

= [0du = (4())(6) = 0.

Since A is arbitrary we get p = 0. Hence ¢ is an injection.

Let p be a continuous semi-norm on E and let & be
an equicontinuous set of #'. Then there exists a o-ring
of sets R’ contained in R such that

= sup |<{v, 0>] < o,

el
veTo
with
N = gv e.//l‘ sup||v(A)] < 12.
Ae®R
Let ue #(E) such that
1

A)) < :
sup p(u(A)) < =
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Let further 2’ € E' such that <z, 2) < 1 for any z€e E
with p(z) < 1. We get

i1+ A = g <AL 1 € g
and therefore 2z’ o p € . e i A and
<@ ()(0), &3] = ([ 0 du, )| = [<&’ 0w, 03] < 1

for any 6 € o. Since 2’ is arbitrary it follows

p((b(w))(0)) < 1

for any 6 e . Hence ¢ 1is a continuous map of #(E)
into Z. 4
Let p be a continuous semi-norm on E and let R’ be

a o-ring of sets contained in R. Let us denote by 4 the
set of v € # such that

sup [v(A) < 1

AeqR
and by A4 its polar set in #'. Then #° is an equiconti-
nuous set of #'. Let we #(E) such that

sup p(($(r))(0)) < 1
0eq°

and let A eR’. We denote by 6 the map
vi—v(A): #4 —R.
Then 6 € #° and therefore

p((A) = p((¥(e))(0)) < 1.

This shows that ¢ is an open map of #(E) onto the sub-
space ¢(#(E)) of 2.

In order to prove the last assertion we may assume by
Proposition 5 that any set of R contained in a set of R’
belongs to R’. The map ¢(u) is continuous if we endow 4’
with the o(.#’, 4)-topology and E with the weak topology.
Let # be the set of p € # such that

sup |p(A)] < 1

Aed’
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and let 4% be its polar set in #'. #° is compact with
respect to the o(#', #)-topology and therefore (¢(u))(A#°)
1s weakly compact in E. Since #° is circled and convex
and since it contains the set {w(A)|A e R’} we infer that
the closed convex hull of {u(A)|A e R'} is weakly compact. B

Remarks 1. — J. Hoffmann-Jgrgensen proved ([2] Theo-
rem 7) that if E is quasicomplete and if R is a o-algebra
then {w(A)|AeR} 1s weakly relatively compact in E,
under weaker assumptions about p.

2. — In the proof we didn’t use completely the hypothesis
that E is sequentially complete but only the weaker assump-
tions that any sequence (z,),x In E converges if there
exists a bounded set A of E such that for any ¢ > 0 there
exists meN with z, —z,ecA for any neN, n > m.

3. — Let F be another Hausdorff locally convex space,
let #(F) be the vector space of R-regular F-valued mea-
sures on R endowed with the seminorm topology, and let w:
E — F be a continuous map. Then for any pe #(E) we
have woupe #(F), the map

pi—uop: M(E) > #(F)

i1s continuous, and for any 0 € .#' we have

fﬁd(uop.):u(f@du).

4. — The theorem doesn’t hold any more if we drop the
hypothesis that E 1is 3-complete.

Turorem 11. — Let R be a 8-ring of sets, let & be a set,
let. E be a Hausdorff sequentially complete 3-complete locally
conyex space such that for any convex weakly compact set K
of E and for any equicontinuous set A’ of the dual E' of E
the map

(¢, ) —=<z,2') : KX A’ >R

s continuous with respect to the o(E, E')-topology on K and
o(E', E)-topology on A’', let M (E) be the vector space of
K-regular E-valued measures on R, and let (u,),e; be a
family in #(E) such that for any J = 1 the family (u,),<;
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1s summable in M with respect to the topology of pointwise
convergence in R. Then for any J < 1 the family (u,).<;
1s summable in M(E) with respect to the semi-norm topo-
logy on #(E).

Let PB(I) be the set of subsets of I. The map of P(I)
into {0, 1}* which associates to any subset of I its charac-
teristic functions 1s a bijection. We endow {0, 1} with
the discrete topology, {0, 1}* with the product topology,
and PB(I) with the topology for which the above bijection
is an homeomorphism. Then $B(I) is a compact space. The
assertion that any subfamily of a family (z,),c; in a Haus-
dorff topological additive group is summable is equivalent
with the assertion that there exists a continuous map f
of P(I) into G such that f(J)= Y x, for any finite

J

subset J of I ([6]). By the hypothe;ies there exists there-
fore a continuous map f of PB(I) into #(E) endowed

with the topology of pointwise convergence in R such
that f(J) = Y w, for any finite subset J of L

tEJ

Let # be the vector space of R-regular real valued
measures on R endowed with the semi-norm topology,
and let .#' be its dual. By Theorem 10 any measure of #(E)
i1s normal and therefore .#(E) may be considered as a set
of maps of #' into E. By Proposition 8 the above map f
1s continuous with respect to the topology on #(E) of
pointwise convergence in #'. It follows that for any J < 1
the family (u,),c; 1s summable in #(E) with respect to
this last topology.

Let us endow .#' with the Mackey «<(.#', #)-topology,
let &£ be the vector space of continuous linear maps of .#'
imto E, and let ¢ be the injection #(E)-—> ¥ defined
in Theorem 10. It is obvious that ¢ 1is continuous with
respect to the topology on #(E) and £ of pointwise conver-
gence in #'. Hence for any J = I the family ($(w,)).c; 18
summable in & with respect to the topology of pointwise
convergence in /',

Let U be a closed convex 0-neighbourhood in E and let
U® be its polar set in E' endowed with the o(E’, E)-topo-
logy. Let R’ be a o-ring of sets contained in R, let &
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AeR’
set in ' endowed with the o(#', #)-topology. For any
we#(E) the map

64———>f0dp.: N —E

be the set 3\' € #|sup [v(A)| < 1%, and let #° be its polar

i1s continuous with respect to the weak topology of E. It
follows that the image of 4 through this map is a convex
weakly compact set of E. By the hypothesis about E the

A

map p.
(0, w’)l———><f6du, a:’>:Af° x U —-R

1s continuous. Let #(A4° X U°) be the vector space of conti-
nuous real functions on #° X U’ By the above proof for
any J < I the family (§,),o; 1s summable in €(#° x U°)
with respect to the topology of pointwise convergence. By
[7] Theorem II 4 the same assertion holds with respect to
the topology of uniform convergence. Let J < I. Then
there exists a finite subset K of J such that

Z @'1(6: .’D') - 2 ﬁ't(e, (L")l <1

t€L

tEJ

for any finite subset L of J containing K and for any
0, ') e #° X U’ We get

Y w(A) —Z w(A)elU

tEL tEJ
for any finite subset L of J containing K and for any
AeR'. Since R and U are arbitrary this shows that the
family (u,),c, is summable in #(E) with respect to the semi-
norm topology. B
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