Soit une représentation bornée d’une algèbre de Banach commutative . Les ensembles spectraux suivants sont étudiés. : le spectre de l’algèbre quotient . : le spectre de l’algèbre d’opérateurs . : les caractères de , tels que les inégalités , , admettent une solution commune , quels que soient et , sous-ensemble fini de . Un théorème de Beurling sur le spectre des fonctions de et des résultats de Slodkowski et Zelazko sur les diviseurs de zéro topologiques simultanés sont obtenus comme des cas particuliers de notre théorie en prenant pour la représentation régulière et son adjoint.
Let be a bounded representation of a commutative Banach algebra . The following spectral sets are studied. : the Gelfand space of the quotient algebra . : the Gelfand space of the operator algebra . : those characters of for which the inequalities , , have a common solution , for any and any finite subset of . A theorem of Beurling on the spectrum of -functions and results of Slodkowski and Zelazko on joint topological divisors of zero appear as special cases of our theory by taking for the regular representation and its adjoint.
@article{AIF_1975__25_2_1_0, author = {Domar, Yngve and Lindahl, Lars-Ake}, title = {Three spectral notions for representations of commutative {Banach} algebras}, journal = {Annales de l'Institut Fourier}, pages = {1--32}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, number = {2}, year = {1975}, doi = {10.5802/aif.553}, zbl = {0301.46045}, mrnumber = {53 #3714}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.553/} }
TY - JOUR AU - Domar, Yngve AU - Lindahl, Lars-Ake TI - Three spectral notions for representations of commutative Banach algebras JO - Annales de l'Institut Fourier PY - 1975 SP - 1 EP - 32 VL - 25 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.553/ DO - 10.5802/aif.553 LA - en ID - AIF_1975__25_2_1_0 ER -
%0 Journal Article %A Domar, Yngve %A Lindahl, Lars-Ake %T Three spectral notions for representations of commutative Banach algebras %J Annales de l'Institut Fourier %D 1975 %P 1-32 %V 25 %N 2 %I Institut Fourier %C Grenoble %U https://aif.centre-mersenne.org/articles/10.5802/aif.553/ %R 10.5802/aif.553 %G en %F AIF_1975__25_2_1_0
Domar, Yngve; Lindahl, Lars-Ake. Three spectral notions for representations of commutative Banach algebras. Annales de l'Institut Fourier, Tome 25 (1975) no. 2, pp. 1-32. doi : 10.5802/aif.553. https://aif.centre-mersenne.org/articles/10.5802/aif.553/
[1] Extensions of Banach algebras, Pacific J. Math., 10 (1960), 1-16. | MR | Zbl
,[2] Un théorème sur les fonctions bornées et uniformément continues sur l'axe réel, Acta Math., 77 (1945), 127-136. | MR | Zbl
,[3] The spectral mapping theorem for joint approximate point spectrum, Bull. Amer. Math. Soc., 80 (1974), 317-321. | MR | Zbl
and ,[4] Sur un théorème de Banach, Duke Math. J., 15 (1948), 1057-1071. | MR | Zbl
,[5] Harmonic analysis based on certain commutative Banach algebras, Acta Math., 96 (1956), 1-66. | MR | Zbl
,[6] On spectral analysis in the narrow topology, Math. Scand., 4 (1956), 328-332. | MR | Zbl
,[7] Some results on narrow spectral analysis, Math. Scand., 20 (1967), 5-18. | MR | Zbl
,[8] Spectral synthesis of bounded functions on the half-axis, Funkcional. Anal. i Prilozen, 3 n° 4 (1969), 34-48 (= Functional Anal. Appl., 3 (1969), 282-294). | MR | Zbl
,[9] On narrow spectral analysis, Math. Scand., 26 (1970), 149-164. | MR | Zbl
,[10] On ideals of joint topological divisors of zero, to appear in Studia Math., 53. | MR | Zbl
,[11] On the spectrum of a representation of an abelian topological group, Dokl. Akad. Nauk. SSSR, 200 (1971), 777-780 (= Soviet Math. Dokl., 12 (1971), 1482-1486). | Zbl
,[12] On representations with a separable spectrum, Funkcional. Anal. i Prilozen, 7 no. 2 (1973), 52-61 (= Functional Anal. Appl., 7 (1973), 129-136. | Zbl
, and ,[13] On the one-dimensional translation group and semi-group in certain function spaces, Uppsala, (1950), 55 pp. (Thesis). | MR | Zbl
,[14] General theory of Banach algebras, Van Nostrand, (1960). | MR | Zbl
,[15] Boundary values of continuous analytic functions, Proc. Amer. Math. Soc., 7 (1956), 808-811. | MR | Zbl
,[16] On ideals consisting of joint topological divisors of zero, Studia Math., 48 (1973), 83-88. | MR | Zbl
,[17] Groups of continuous functions in harmonic analysis, Acta Math., 125 (1970), 109-154. | MR | Zbl
,[18] Weak-* dense subspaces of L∞ (R), Math. Ann., 197 (1972), 180-181. | MR | Zbl
,[19] On a certain class of non-removable ideals in Banach algebras, Studia Math., 44 (1972), 87-92. | MR | Zbl
,Cité par Sources :