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THREE SPECTRAL NOTIONS
FOR REPRESENTATIONS

OF COMMUTATIVE BANACH
ALGEBRAS

by Yngve DOMAR and Lars-Ake LINDAHL

1. Introduction.

The results in Lyubich [11] and Lyubich, Matsaev and FeFdman
[12] on the spectrum of group representations have inspired us to
reconsider our papers [7] and [9], where we discussed narrow spectral
analysis, a concept originating from Beurling [2] and earlier studied in
[5], pp. 55-66, and [6]. During our work we have found close con-
nections with another independent line of research, represented by
the papers Arens [I], Zeiazko [19], Slodkowski [16] and Choi and
Davis [3]. The main results of [3], [7], [9], [ I I ] , [12], [16] and [19]
can in fact all be formulated in terms of three different spectral
notions for representations of commutative Banach algebras. The aim
of this paper is to present such a unified approach and to prove some
new results.

Let T be a bounded representation of a commutative Banach
algebra B on a normed linear space V, and denote by OTl(B) the
Gelfand space of B. With T we shall associate the following three
spectral sets.

The first one is the hull A^ (T) in OTC (B) of Ker T. This is an old
and very much studied notion.

The second spectral set A^(T) consists of those <^e A^(T) which
are bounded with respect to the seminorm I - 1 in B, defined by
putting | b | = II T^ ||. (T^ is here the image of b under the mapping T).
This spectral definition turns out to be an extension of the old notion
of narrow spectrum, studied in [7] and [9].

The third spectral set A3<T), finally, consists of all ^G«nr(B)
such that, for every e > 0 and every finite F C B, there is a v G V
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satisfying [Ml == 1 and IIT^i; - &(<p) i; || < e, for all 6 E F. This de-
finition can be considered as a generalization both of the essential
spectrum in [11] and of the set of maximal ideals consisting of joint
topological divisors of zero, studied in [16] and [19].

The paper is organized in the following way. In Section 2, A^T)
and A^(T) are introduced and some simple properties of them are
derived. The set A^(T) is introduced in Section 3, and it is proved to
be a closed subset of A^(T). Section 4 contains some elementary
results on restrictions and reductions of representations. The regular
representation R and its adjoint representation L are studied in
Section 5, and we give a new proof of a theorem of Zeiazko, which
in our terminology states that A3(R) contains the Shilov boundary
of B. In Section 6, this result is used to prove that A3<T) is nonempty
if A^(T) is nonempty. Various conditions which suffice for equality
of two, or all three, of the spectra are also given, and connections
with results in [11] and [12] on group representations are pointed out.
Section 7 contains a generalization of extension theorems in Lyubich
[11] and Slodkowski [16]. Restrictions of L to invariant subspaces of
B* are studied in Section 8. Theorem 8.1 shows that, for these repre-
sentations, A^ and A^ coincide with the two spectral sets studied in
[7] and [9]. As an application we study the case when B is a Beurling
algebra, and we obtain an extension of the theorem in Beurling [2].
Comparisons are also made with results of Dixmier [4] and Warner
[18]. In Section 9 we give some examples which show the possibility
of having A^ =^ A^ ^ A3 for restrictions of L.

2. The spectrum and the narrow spectrum.

Let B be a commutative Banach algebra, and denote by OTl(B)
the Gelfand space of B, that is the (possibly empty) locally compact
space of all nontrivial complex-valued homomorphisms of B. It
deserves to be pointed out that, except for Section 8, our investigation
will not depend on the choice of norm in B. In particular, we need
not assume that \\ab\\ < ||fl|| \\b\\.

Let
T : B ^ End(V), b ^> T^ ,
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be a bounded representation of B on a normed linear space V, i.e. a
homomorphism from B into the normed algebra End(V) of bounded
operators on V such that ||T|| = sup ||T^|| | |&||~1 < oo. The kernel
and the image of T will be denoted by Ker T and Im T, respectively.

The spectrum A^(T) of T is defined to be the hull in 3TC(B) of
the closed ideal Ker T. It is immediate that A^(T) is a closed (possibly
empty) subset of 3Tl(B).

Put B(T) = B/KerT, and denote the cosets b 4- KerT by b^.
We shall give B(T) two different norms. The first one is the usual
quotient norm |H|^ under which B(T) becomes a commutative
Banach algebra, which will be denoted by B^(T). The canonical
homomorphism

^ : B -> B^ (T) , b ^b^ ,

induces a homeomorphism

TT^ : ^(B^(T)) -> A^(T)

between the Gelfand space of B^(T) and the spectrum of T. As usual
we identify these two spaces. Then we have

b^) = bW V^eAi(T), V 6 E B .

Since B(T) is algebraically isomorphic to Im T, we obtain a
second, submultiplicative norm IHI^ in B(T) by putting

IIM2 = IIT^II .

Let B^(T) denote the completion of B(T) under this norm. Then B^(T)
is a commutative Banach algebra. The injection/ : B^(T) <^ B^(T) is
continuous, because \\b^\\^ < ||T|| l l f t ^ l l i - lt follows that the dual
map

/* : OmB^CO) -> A,(T) = JIt(B^T))

is an embedding. The closed subset

A^m^WB^T)))

of A^ (T) will be called the narrow spectrum of T. It is convenient to
identify OiKB^T)) with A^T).

Since the elements ofA^T) can be regarded as bounded complex-
valued homomorphisms on Im T, and since the norm of these homo-
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morphisms is at most one, the narrow spectrum has the following
characterization, which does not mention B^(T) explicitly.

PROPOSITION 2.1. - Let ^ G 3^(B).
i) // ^ C A^T), then | b(^} \ < || T^, || /or a// 6 E B.

ii) // there is a constant 00 such that 16(<p) I < C || T^ || for
all & G B , r/z^ ^EA^(T).

A simple but useful consequence of Proposition 2.1 and of the
definition of the spectrum is the following :

PROPOSITION 2.2. - Let S and T be two representations of B. //
I I S^ || < || T^ || /or all 6 G B , r/^ A,(S) C A,(T), / = 1 , 2.

We now give some examples which show that, in general, A^(T)
is a proper subset of A^ (T).

Example 2.3. — Let D denote the closed unit disc in the complex
plane, and let A(D) be the sup normed algebra of all continuous
functions on D that are analytic in the interior of D. The Gelfand
space of A(D) can be identified with D, and under this identification
/(z) =/(z) for all /EA(D) and all z E D . Let E be a closed subset
of D such that no nontrivial /GA(D) vanishes on E, and define a
representation T : A(D) -^ End (C(E)) by

T^=/|E- g V /GA(D) , V^EC(E) .
Then

IITJI = sup |/(z)| ,
' zeE

and hence A^(T) = D and A^(T) = E, where E denotes the polyno-
mially convex hull of E.

Example 2.4. — Let (c^,)^ be a sequence of positive numbers
with the following properties

i) Oo = 1

n) ^m^n^^^n , V m , ^ Z ,

iii) lim a17" = 0 .
M-^oo "
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Let B be the Banach space of all complex sequences b = (b^ with
&o = 0 and || b \\ = 2^ | &„ | < oo. B is a Banach algebra under convolu-
tion and OH (B) = D\{0}. Let V be the Banach space of all complex se-
quences v = (v^ with || v || = 2^ | v^ | Q^ < oo, and let V^ be the sub-
space of all v G V with VQ = 0. By ii), V^ is a Banach algebra under
convolution, and by iii), JlZ(Vo) = 0. Convo luting elements in B
with elements in V we obtain a bounded representation T of B on V,
and it is easy to see that B^(T) = B and B^(T) = V^. This gives
Ai(T) = D\{0} and A^T) = 0.

In order to assure that the spectrum of a representation T is
nonempty one has to impose some condition on T. The following
condition turns out to be sufficient, and it will be assumed to hold
at some places.

Assumption /. - There exists an element u G B such that T^ i=- 0
and T^ = T^ for all b E B.

In particular, if B is an algebra with unit and T ̂  0, then Assump-
tion I is fulfilled.

PROPOSITION 2.5. - Under Assumption /, both A^(T) and A^(T)
are compact and nonempty.

Proof. — If T fulfills Assumption I, then KerT is a regular ideal
in B with u acting as a unit modulo KerT, and u^ is an identity
element for both Bi(T) and B^T). So in this case A^(T) and A^(T)
are Gelfand spaces of unitary Banach algebras, and this proves the
proposition.

The study of the spectrum of a representation can be reduced
to the case when the representation satisfies Assumption I, simply by
adjoining a unit to B and extending the representation in a natural
way. Let B be the Banach algebra obtained from B by adjoining a
unit 1. We shall regard B as a subalgebra of B. The Gelfand space
3TC(B) of B can be identified with OTl(B)U{^}, where ̂  denotes
the zero homomorphism of B, if we define

(b +X)^) =6(^) +x , V & G B , vxec , V(^G m(B)u{^}.
Let I be the identity operator on V, and extend the representation T
of B to a representation T of B on V by defining
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T ^ = T , + A I .
/^/

Obviously, T fulfills Assumption I. The following proposition relates
the spectra and the narrow spectra of T and T.

PROPOSITION 2.6. - A,(T) = A,(T) 0 CTZ(B) for i = 1, 2.

Proof. - The proof is the same for i = 1 and / = 2. We start
from the commutative diagram

B c—> B
r[ \r

Im T <=——^ Im T

This induces in a natural way a commutative diagram

B c——^ B

^ 1 1 ̂  (2.1)
B,(T) ——j^ B,(T)

Since Im T is an ideal in Im T of codimension 0 or 1, it follows that
the codimension of B,(T), considered as an ideal in B,(T) via ^, is 0
or 1. (The codimension of B^(T) is 0 if and only i f ! m T = Im T, and
the codimension of B^ (T) is 0 if and only if Im T is dense in Im T).
By [14, Theorem 3.1.18] the dual maps of the horizontal maps in (2.1)
induce homeomorphisms

JIZ(B)\{^} -> OTC(B) and ^(B;(T))\9e, -^ 01Z(B,(T)) .

Here, 96, denotes the hull of B,(T) in 01Z(B.(T)). Thus, depending on
the codimension of B,(T), either 9C, = 0 orffe, ={^^}, where <^is
the homomorphism that annihilates B,(T), and in the latter case,
TT,* obviously maps ̂  on ̂ . Thus, by duality, we obtain from (2.1)
and from the definition of A, either of the following two commutative
diagrams in which all straight arrows are homeomorphisms.

01Z(B)<——CTZ(B)\{^J J)Z(B) <—— m(B)\{«^ }
s ^L s f °°

^(T) A,(T) A,.(T) A,(T)\{^}
t J^ t ^ ^t

J1Z(B,(T)) <— CTKB,(T)) W(B,(T)) <- ^(B,(T))\{<p1 }
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These diagrams show that either A,(T) = A,(T) or

A,(T) =A,(T)U{^}.

In both cases, A,(T) = A,(T) 0 01Z(B).

3. The approximate point spectrum.

We are now going to introduce and study a third spectral concept
which has its roots in some more special definitions of Lyubich [11]
and Zeiazko [19].(*)

Let T be a bounded representation of B on V. If F C B and a?
is a complex-valued function defined on F, we put

v^(o} ; F) = inf sup || T^ v — o?(6) v || .
l l u l l - l b^T

The set A3(T) of all <^Em(B) such that v^\ F) = 0, for all
finite subsets F of B, will be called the approximate point spectrum
o/T.

PROPOSITION 3.1. — A3<T) is a closed subset of A^T).

Proof. For each finite set F, the map ^ ̂  v^ ; F) is conti-
nuous. Indeed, if \b(^p) - b(^o)\ < e for all b E F, then

|^;F) -v^o ; F ) | < e .

It follows that A3<T), being the intersection of the closed sets
{<p G 3rc(B) ; v^ ; F) = 0} (F finite), is a closed subset of Wi (B).
Since A^(T) is closed, it now suffices to prove that A3<T) is a subset
of A^CT). Suppose that ^p^A^(T). Then

( & ( ^ ) | = inf I I & ^ ^ I K inf (||&(^) v - T^ || + || T^v ||) <
II v 1 1 = 1 llull^l

< v^ \{b}) + I I T^ || = 0 4- || T^ || = || T^ ||

for every b E B. Hence ^EA^T), by Proposition 2.1.

(*) Added in proof. The approximate point spectmm has also been studied
by Slodkowski and Zeiazko in their recent paper "On joint spectra of commuting
families of operators", Studia Math., 50 (1974), 127-148, which among other
things contains equivalent versions of our Theorems 6.3 and 7.1.
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In general, A3<T) is a proper subset ofA^T) (see e.g. Example
3.4). Of course, it is important to know whether A3(T) is nonempty,
and one of our main results (Theorem 6.3) will be that so is the case,
whenever A^(T) is nonempty. There is no corresponding relation
between A^(T) and A^(T) as is shown by Example 2.4.

We now give some equivalent definitions of the approximate
point spectrum. Of these, iii) is particularly useful for the determi-
nation of A3(T) in concrete cases.

PROPOSITION 3.2. — The following five conditions are equivalent :
O^GA^T) .

ii) v^ ; F) = Ofor every finite subset F of some dense set in B.
iii) Vj(^p ; F) = 0 for every finite subset F of some set of gene-

rators of B.
iv) v^(^p ; F) = 0 for every compact subset F of B.
v) There exists a net {^cJaea ln ^ such that \\v^ \\ = 1, for all

a ea. and lim || T^ - b^) v^ \\ = 0, for all 6 G B .
ex

Proof. — i) => iv) follows by a standard compactness argument.
iv) =^ iii) is trivial.
iii) =^ ii) : It suffices to prove that if F = { & i , b^ , . . . , b^} and

if F' is a finite set of elements of the form a = P(6^ , b^ , . . . , 6^),
where P is a polynomial in n variables without constant term, then

^;F')<C^OP;F) (3.1)

for some constant C (depending on F and F'). By Taylor's formula,
there exist elements d. G B such that

a - dW = P(b, , . . . , &„) - P ( 6 i ( ^ ) . . . . . b^)) =

= ^ d,(&, &,(^)) .

Hence

IIT.t- - aW v || = || ̂  V(T,.I; - b^) v)
/ - i ! J

< V II T^. || [I T^. v - b.W v || < C(a) . sup || T^ v - b(^p) v
,=1 / 1 b^\'
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n ^
with C(a) = V || T. ||. It follows that (3.1) holds with C = max C(a).

,"i 7 ^eF'

ii) =^ i) is obvious.
i) ^ v) : If <pGA3(T), then we can construct a net {^Jae<a»

with the set of all finite subsets of B as index set OL, and such that v)
holds. The converse is trivial.

Example 3.3. - Let A^ , . . . , A^ be a commuting family of
bounded linear operators on a Banach space X, and let B be the
Banach subalgebra of End (X) generated by A^ ,. . . , A^ . If T is the
identity representation of B, then A3(T) coincides with the joint
approximate point spectrum of A^ , . . . , A^ as defined in e.g. [3].

Example 3.4. - Let B and T be as in Example 2.3. Then

A3(T) = E. Thus, if for instance E = ^ z ; | z | = — { , then

A3(T)^A2(T)^A^(T) .

The following relation between A3<T) and A3(T) follows im-
mediately from the definition of the approximate point spectrum.

PROPOSITION 3.5. - A3<T) = A3<T) n OTl(B).

4. Induced representations.

Let T : B -^ End (V) be a bounded representation. If I C Ker T
is a closed ideal in B, we obtain a bounded representation ^ of the
quotient Banach algebra B/I on V, by defining ̂ +1 = T^ . Obviously,
l l^+i l^ l lTJKIITII ||6 4- I l l e / i . Identify OTc(B/I) with the hull of
I, which contains A^ (T). We then have the following result, the proof
of which is immediate from the relations lrT^)+^ = T^ and

Ker^ (KerT)/! .

PROPOSITION 4.1. - A^T) = A,(T) for i = 1 , 2 , 3 .
Thus, in particular, by taking I = Ker T and passing to the

quotient B^ (T), if necessary, we may reduce the study of the spectrum
of a representation to the case when A^ coincides with the Gelfand
space.
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Let W be a (T-)invariant linear subspace of V, i.e. T^W C W for
all 6 G B . By restricting each T^ to W we obtain a representation Tw

of B on W, which is called the restriction of T to W. Obviously,
11 T^ I I < I I T^ ||, and hence A,^) C A,(T) for i = 1, 2, by Proposition
2.2. Clearly, this inclusion is valid for i == 3, too.

If W is closed and invariant, the reduction T^1^ of T to the
quotient space V/W is defined by

7^% + W) = T^r + W .

Since || ̂ /w || < || T^ ||, we have A^T^) C A,(T) for / = 1, 2. Simple
counterexamples show that this inclusion fails when / = 3.

PROPOSITION 4.2. — Let W be a closed invariant subspace of V.
Then

i) Al(T)=Al(TW)UA^(TV / w)

ii) A^ (T) D A^ (T^ U A^ (T^).

// T ^ completely reduced by a pair of closed subspaces W and X,
then

iii) A3(T)=A3(T W )UA3(T X ) .

Proo/ All that remains to be proved is the inclusion C in i)
and iii). The first one follows from the easily verified inclusion

(Ker T^ • (Ker T^) C Ker T ,

where the left hand side denotes the ideal generated by all products
ab with a E Ker Tw and b G Ker T^. The proof of iii) is left to the
reader.

Remark. - There are examples where the inclusion in ii) is
proper, even when T is completely reduced by a pair W, X. See e.g.
Example 9.3.

PROPOSITION 4.3. - Let b E B. // W = T^ V, then

{(^GA^T) ; b(^p)^0}CA^) for i= 1 ,2 ,3 .

Proof. Assume that ^GA,(T) and 6(^)^=0. We consider
the cases / = 1, 2, 3 separately.
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/ = 1 : We have Ker Tw = {a ; ab E Ker T}. Therefore a C Ker Tw

implies fl(^o) b(^) = 0, that is a^p^) = 0, and it follows that
^EA^).

i = 2 : Firstly, 6(^) ^= 0 implies ||T^ || ^= 0. Next,

I I T^ || = sup || T, T,v || > sup || T^ z; I t = || T,, || || T, ||-1

IIT^IKl H u l l ^ H T ^ I I *

and hence, by Proposition 2.1 i),

|^|.1^^<_L^<-^.,T.»||
16(^)1 l&(^o)l 16(^o) l

for all a G B. This shows that condition ii) of Proposition 2.1 is fulfilled
with C = I I T ^ I I - | b(^) I - 1 , and hence ^GA^T^.

i = 3 : Let e > 0 and a finite subset F C B be given. Put

C = max (1 Ja(^o)l) and F' = {ab ; a G F } u { 6 } .
a < £ F

Since (^GA^T), there exists a i; € V such that IMI = |6(^o)l~1

and || T^ - c((^)i; || < e/C for all c € F\ Define w = T^i;. Then
w G W , ||w|| > || b(^o)v\\ -e/C> 1 - e and

IIT^w -a(^)w|| <IIT^r -^0)^0)^1 +

+ l^(^o) l l l ^^o)^ -T^| |<(1 + C ) e / C < 2 e

for all a e F. It follows that ^ G A3(TW).
We have considered representations T on arbitrary normed linear

spaces V. However, as far as our three spectra are concerned, it is no
restriction to assume that V is a Banach space, because if V is the
completion of V and if T^ denotes the unique extension of T^ to V,
then T is a bounded representation on V with A^.(T) = A^.(T) for
/ = 1 , 2 , 3 .

5. The regular representation and its adjoint.

Let R be the regular representation of B, defined by

R^a=ba . \f a , 6 E B .
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Denote the dual space of B by B* and let L be the adjoint of R.
Thus L is the representation of B on B* defined by L^ = R^ for all
f r E B .

R and L are obviously bounded representations. In this section
we shall study their spectra.

PROPOSITION 5.1. - A,.(L) = ^l(B) for i = 1, 2, 3.

Proof. - It suffices to prove that A3(L) = OTZ(B), and this is
trivial, because L^ = b(^)(p for every <^E 01Z(B).

COROLLARY 5.2. - A,(R) = OTl(B) /or z = 1, 2.

Proo/. - Since || 4 || = || R^, [|, we have A^(R) = A^(L), by Pro-
position 2.2.

Remark. — Corollary 5.2 is equivalent to the inequality

sup \b(^) | < sup \\ab \\ , V b E B ,
^eJii(B) l l a l K l

by Proposition 2.1. Of course, this inequality is trivial when B has a
submultiplicative norm and a bounded approximate identity with
bound 1. In the general case, it can also be deduced from the spectral
radius formula.

COROLLARY 5.3. - Let I be a closed ideal in B. Then

A^R®71) = A^R^) = Hull (I) .

Proof. - Since I C Ker R®71, the representation \R^) of B/I
on B/I is well-defined. Obviously, '(R871) is the regular representation
of B/I. Hence, Corollary 5.3 follows from Proposition 4.1 and Corol-
lary 5.2.

The approximate point spectrum of R coincides with a concept
studied by Zeiazko [19]. In [19], an ideal I C B is said to consist of
joint topo logical divisors of zero (abbreviated j.t.d.z.) if^(^ ; F) = 0
for all finite subsets F of I. (Recall that ̂  is the zero map on B). If
B is a Banach algebra with unit, then ^p^.A^(R) if and only if Ker^p
consists of^t.d.z. (In the general case, we have <^GA3(R) if and only
if Ker ̂  C B consists of j.t.d.z). The following theorem is thus only a
reformulation of the main theorem in [19].
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THEOREM 5.4. — The approximate point spectrum A,(R) of R
contains the Shilov boundary F(B) of B.

Proof. - We shall give a proof that differs from Zeiazko's proof.
Let ^Gr(B), let e > 0, and let F = { Z ^ ^ b ^ . . . , b ^ } C B be a
finite subset of Ker ^o. (^ is here considered as an element of
OTt(B)). We have to show that there is an element x E B such that

[|6x|| < e IMI for all bCF . (5.1)
Put

C = sup | b (^)
b(- F , ^eJH(B)

and

u = { ^ e OIZ<B) ; |&(^)| <-6 , V & E F } .

Since (^oGr(B) and LJ is a neighbourhood of ^Q , there exists an
element c E B such that

sup |c(^) | = 2 and sup |c(<^) | < e/C .
JH(B) cu

It follows from the spectral radius formula that

lim ||c"||1^ = 2 ,
M—>-0"

and that (see [7, Lemma 1])

ITnT sup \\bt^bl^\.:bn^kcn\\lln <. sup \b(^)c(^)\<e
n->oo " i + - - - +"fc=" fte:F.^ejti(B)

Now fix ^ such that

and
lc" | |> 1 , (5.2)

L " l l " 2 . . , " f c
I16 i 62 . . . •& /^11 <^ (5.3)

for every set of nonnegative integers n^ , n^ , . . . , n^ with 2 n^ = ^2.
It then follows from (5.2) and (5.3) that there exists an element
x G B of the form

- Wi m^ mi,
x = b , l b , 2 ' . . ^ b , k c n ,

where w, > 0 for every ;, and 2 w, < /2 - 1, such that (5.1) holds.
For details, see [5], p. 59, where the same argument has been used.
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Remark. - There are examples of algebras B with identity such
that F(B) =^A^(R). See e.g. [1]. However, it is easy to see that
A3<R) = r(B) when B is a sup norm algebra.

If OH(B) is nonempty, then the Shilov boundary is nonempty,
too. Hence, Theorem 5.4 has the following corollary.

COROLLARY 5.5. -//01Z(B) is nonempty, then A^(R) is nonempty.

6. Nonemptiness of the approximate point spectrum.

Our first aim is to generalize Corollary 5.5 to arbitrary represen-
tations T. To this end we shall need the following :

LEMMA 6.1. — Let R,p denote the regular representation o/B,(T).
Then

A3(RT,)CA3(T) .

Proof. - Let (^GA^R^), e > 0, and a finite subset F of B be
given. Since B(T) is dense in B^(T), there exists x G B such that

IITJJ = l l ^ l l ^ = 1
and

I I ̂  ̂  - bW T^ || = || b^x^ - b^) XT [l2 < e

for all b G F. Next, choose w G V such that || w || < 2 and || T^ w \\ = 1.
Then

| |T^w-6(<p)^w||<e | |w||<2e

for all b G F, and hence v^ ; F) < 2e. Since e > 0 and F are arbi-
trary, this proves that ^p^A^CT).

Example 6.2. - This example shows that the inclusion in Lemma
6.1 may be proper. Let B be the disc algebra A(D), and let L be the
adjoint of the regular representation. Then B^(L) = B, so R^ is the
regular representation of B. Hence

A3<L) = D and A^R^) = 3D = {z ; |z | = 1} .
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THEOREM 6.3. - // A^CT) ^ 0, r/z^ A3<T) ^ 0. /n particular, if
T satisfies Assumption 7, r/?^z Ag(T) =^ 0.

Proo/ - Since A^(T) = Or^B^T)), the theorem follows imme-
diately from Corollary 5.5, Lemma 6.1 and Proposition 2.5.

By Lemma 6.1 and Theorem 5.4, we have the following chain of
inclusions :

F(B2(T)) C A^) C A3(T) C A^T) C A^ (T) C Orc(B) .

In general, none of these inclusions can be replaced by equality (cf.
Examples 3.4 and 6.2 and the remark preceding Corollary 5.5).
However, if B^T) is regular, then FCB^T)) = OTKB^T)), so it
follows that A3<T) = A^(T). This relation holds, in particular, when
B is regular, because the regularity is inherited by B^CT). If B is
regular and semisimple, then in fact A^T) = A3(T). The proof of
this uses the following lemma (cf. [5, Theorem 3.21] and [9]).

LEMMA 6.4. - Let b E B and put W = T^V.
i) // b is an idempotent modulo Ker T, then

A^) = supp&T ={<^Ai(T) ;W= 1} .

ii) If B is regular and semisimple, then

A l ( T W ) C A l ( T ) n s u p p 6 .

Proof. - i) Assume that b is an idempotent modulo KerT. If
^EA^T) and b^) = 1, then ^EAi^), by Proposition 4.3.
So assume that ^GA^T) and 6(<^o) = 0. We must show that
</?o ^ A^ (T^. Choose c G B such that c(^) ̂  0 and put a = c - cb.
Then ab = c(b - b2) C Ker T so that a G Ker T^ but a(^o) = c(^) i=- 0.
Hence ̂ A^).

ii) Assume that B is regular and semisimple. We already know
that A^T^CAiCT). So assume that ^ G A, (T)\supp 6. Then, by
regularity, we can choose a such that a(^o) ¥= 0 and d(\p) = 0 on
supp6. Then a(^)b(^)=0 on OTc(B) so that ab = 0 by semi-
simplicity. It follows that fl,eKerTW and, since d(^) =fc 0, we con-
clude that ^^A^CT^.

We can now prove the following theorem (cf. [9]).
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THEOREM 6.5. - i) If either A^(T) is totally disconnected or B is
regular, then A^(T) = A^(T).

ii) // either Ai(T) is totally disconnected or B is regular and
semisimple, then Ai(T) = A^T).

Remark. -We do not know whether A^T) = A^(T) for all
regular algebras.

Proof. — The first statement has already been proved in the pa-
ragraph preceding Lemma 6.4, because the hypothesis on A^(T) (or
on B) implies that B^(T) is regular. As for the second statement,
Propositions 2.6 and 3.5 reduce the proof to the case when B has an
identity. Then every non-zero representation of B has a nonempty
approximate point spectrum by Theorem 6.3. Assume that ^Q £ A^ (T),
and let U be an arbitrary neighbourhood of (^Q . We shall prove that
U HA3(T) is nonempty, and, since A^(T) is closed, this implies that
^o (= ̂ (T). If B is regular and semisimple we use regularity to choose
b G B so that b^p^) = 1 and supp b C U. If instead A^(T) is totally
disconnected, an application of Shilov's idempotent theorem to the
algebra B^(T) gives an element b^B such that b^ is an idempotent
in B^(T) with b(^o) = b^^p^) = 1 and supp b^ C U. In both cases
we set W = T^ V and deduce from Lemma 6.4 that A^T^ C U and
from Proposition 4.3 that ̂  EA^CI^) so that T^ is non-zero. Hence
A3(TW)^0 and, since A^(T^) C A^(T^) and A^(T^) C A^T\ it
follows that U n A^T) ̂  0.

As an application of our results on the approximate point
spectrum we shall now derive two extensions of theorems in [11] and
[12]. Let T : G -> Aut(X) be a uniformly continuous representation
of an abelian topological group G on a Banach space X, and let G*
denote the group of all continuous (unbounded) characters of G, i.e.
continuous homomorphisms G -> C\{0}. Following Lyubich [ I I ] ,
we define the essential spectrum o^(r) of T to be the set of all \ G G*
for which there is a net {.^aea m ^ suc^ ^a^ ll^oJI = 1» ^or a^
a G (X, and lim || r^ x^ — \(g) x^ \\ == 0, for all g G G. The spectrum
a(r) of T consists of those characters \ which satisfy the relation
| 2^ a^x(j?,)l < 112,"=i ^-^.IL for every choice of n ;

o'i , ̂ 2 » • • • ' ̂  E c and Si , J?2 » • • • '^i E G •
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THEOREM 6.6 [11]. - a^r) i=- 0.

Proof. — The operators r-, g G G, generate a Banach subalgebra
B of End (X). For every ^ E J1^(B) we obtain a character \ G G* by
defining x,/J?) = f^)- The "^P ^ ̂  X^, is a bijection of 3Tl(B)
onto o(r) which allows us to identify OTC(B) with a(r). Consider the
identity representation T of B on X, defined by T^ == a? for every
a? E B. It is obvious that A^T) = o'et7')? ^d since B has an identity,
it follows from Theorem 6.3 that O^(T) ^= 0.

THEOREM 6.7 [12]. -Assume that lim llr^ll1^ = 1 for all
n ->•00 "

j?GG. TTz^z a^(r) = a(r).

Z^oo/. - Let B and T be as in the proof of Theorem 6.6. The
condition on r implies that OTC(B) can be identified with a subset of
some Cartesian product of unit circles. It follows that the Shilov
boundary F(B) equals OTKB). Since B^CT) = B, Theorem 5.4 and
Lemma 6.1 now yield 3TL(B) = F(B) C A^(R^) C A^T) == or^(r). This
proves the theorem.

Remark. — Lyubich [11] proves Theorem 6.6 for separable groups
only. His proof is entirely different and does not use any Banach
algebra methods. However, a close look at his proof reveals that it
does not use the full group structure of G but only the semi-group
property. It follows that his proof can be extended to deal with
representations of Banach algebras. In order to obtain extensions to
the non-separable case, it seems however necessary to use Banach
algebra techniques. [12] uses such techniques, but again only separable
groups are considered.

7. An extension theorem.

The following extension theorem is useful for the study of the
approximate point spectrum. It contains the extension lemma of
Lyubich [11] and the results of Slodkowski [16] and Choi-Davis [3]
as special cases. Another special case is Proposition 3.2 iii) =» i). Our
proof is inspired by the proof of Lyubich [11] which uses an idea that
goes back to F. Quigley [14, p. 25]. The new feature in our proof is
the use of Theorem 6.3.
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THEOREM 7.1. — Let T be a representation of ^6 satisfy ing Assump-
tion I with T^ equal to the identity operator on V. Let E C B, let co be
a complex-valued function defined on E, and assume that v^(o} ; F) = 0
for all finite subsets F of E. Then there exists a <^G A3(T) such that
o}(b) = b(f) for all & G E.

Proof. — By assumption, there exists a net ^° =={^}ae<a, m ^
such that ||̂  || = 1 for all aGO;, and lim ||T^ - o?(&) ̂  || = 0 for
all b E E. Define /^(ff ; V) to be the normed linear space of all nets
v ^^o^ae^ °f elements in V with the norm

I I V l l = SUp H ^ l l <oo ,
a

and let CQ(QL ; V) be the closed linear subspace of all nets that converge
to 0.

The representation T gives rise to a bounded representation T°
of B on FOX ; V), defined by T^({^}) = {T^}. Obviously, c^QL ;V)
is invariant under T°°. Let S be the reduction of T° to the quotient
space X = 1^(00; V)/Co((St; V). We note that the norm in X is given by

I I <^> + ^(0 ; V) || = inf sup || ̂  + w^ || = lim sup || ̂  || ,
{^cj^o a a

Put Y = { x G X ; S^x = G;(&)JC , V 6 e E } .

Then Y is a non-zero linear subspace of X, because

x° = -u0 + Co(QL ; V) C Y and \\x° \\ = 1 .

Since Y is invariant under S, the restriction SY is well-defined. Ob-
viously, Sj is the identity operator on Y, and hence A3(SY) ^= 0, by
Theorem 6.3.

Let (^ G A3(SY). If b C E, then

0 = v^ ;{&}) = inf || S^x - b^)x || =s .teY,||jc||-i

inf \\^(b)x-b(^)x\\=\^(b)-b(^p)\ .
;c€EY, l l j c l l - 1

Hence a? (6) = &(<^) for all 6 € E. The theorem thus follows if we
prove that </?GA3(T). To this end, let e > 0 and a finite subset F of
B be given. Then there exists an element x ={v^} + CQ(QL ; V) in Y
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such that ||x|| = 1 and || S^x - b(^)x\\ <e for all b G F. By the
definition of SY and of the norm in Y, this means that

lim sup || v^ || = 1 and lim sup || T^ v^ - b(^) v^\\ <e
a a

for all b G F, and it follows that <pE A^CT).

Remark 1. — If we apply the theorem to the case when T is the
regular representation of an algebra B with unit, E is an ideal in B,
and a? is the zero function, we obtain a positive answer to a conjec-
ture of Zeiazko [19], namely that every ideal consisting of joint topo-
logical divisors of zero is contained in a maximal ideal consisting of
joint topological divisors of zero. This result has also been obtained
by Slodkowski [16] by a different method.

Remark 2. - Our proof of Theorem 7.1 uses Theorem 5.4.
However, it is possible to prove the extension theorem without using
Zeiazko's theorem. Lyubich does this in a special case, and so does
Slodkowski. Therefore it might be of interest to note that there is an
easy way to deduce Zeiazko's theorem from the extension theorem.
This is shown in [10].

8. The adjoint of the regular representation.

In this section we assume that B is normed so that

\\ab || < \\a || ||6|| .

We denote the closed ball in B* of radius p and centered at 0 by S .
Let L denote the adjoint of the regular representation of B, and

let V be an L-invariant subspace of B*. The aim of this section is to
give an alternative characterization of the spectrum and the narrow
spectrum of L^. In order to get a simpler notation we shall write
A,(V) instead of A, (I/), and we shall also speak of A,(V) as the
spectrum (narrow, approximate point spectrum) of V. The spectrum
A,0) of an element v G B* is defined to be the corresponding spectrum
of the subspace {L^ v ; b E B}.
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THEOREM 8.1. - i) Ai(V) == V H J1KB).

ii) A^(V) = V U S ^ U OTKB) /or all p> \.

(The closure bar refers to the weak-* topology).

Proof. - i) Denote the annihilator of Ker I/ in B* by (Ker I^)1.
If VQ ̂  V, then there exists a 6 € B such that <^ , b > = 0 for all v C V
whereas <VQ . & > + 0. It follows that A G Ker 1 ,̂ because

< 4 ^ , a > = < L ^ , 6 > = 0

for all aEB_and vCV. Hence ^^(KerI^)1, and this proves that
(Ker I/)1 C V. In particular, A^ (V) = (Ker I/)1 H WiW C V 0 Orc(B).

To prove the converse inclusion, assume that ̂  E V and 6 G Ker L\
Then <i/o , ab ) = 0 for all a E B, because ( v , ab) = (L^v , a ) = 0 for
all a E B and v E V. If in addition ^ G OH(B), then a(^) 6(^) = 0
for all a E B , and it follows that b(Vo) = 0. This shows that

V 0 01Z(B) C (Ker L^ H OTZ(B) = A^ (V) ,

and the proof of i) is complete.
The proof above also shows that V = (Ker I^)1, if b lies in the

closure of b . B for each b E B (e.g. if B has an approximate identity),
because then (VQ , ab) = 0 for all a implies that (v^ , b > = 0, without
any assumptions on VQ . Thus, in that case B^l/)* is isomorphic to V.

ii) V H S^ is a convex, balanced set with compact closure, so it
follows from the Hahn-Banach theorem that a functional ^ G B *
belongs to V H Sp if and only if VQ and V 0 S are not separated by
any hyperplane. Since the continuous functionals on B* (with the
weak-* topology) are of the form v ^ {v , b > with b G B, we con-
clude that

VQ E v n Sp ^ V 6 G B : | < ^ , 6 > | <p . sup | <^ , 6) |. (8.1)
i/evns^

Since L ^ V C V and || L^ || < ||a||, we obtain the following estimate
for the right hand side of the inequality in (8.1) :

sup \(v,b)\> sup | < L ^ , 6 ) | =
y e v n s ^ vfEVns^ j l a l l ^ i

sup |<L^,a>| = IIL^H . (8.2)
i/evns^jlalKi
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In the opposite direction we have trivially

sup \ ( v ^ a b ) \ = sup | < 4 y , f l > | <||a|| I I L ^ H . (8.3)
i / evns^ i / evns^

It follows immediately from (8.1), (8.2) and Proposition 2.1 i) that
A^(V) C V H S^ U OTZ(B), so to complete the proof of ii) it suffices
to prove that V H S^ H Ol^(B) C A^(V). To this end, assume that
<^e V H S ,̂ 0 CTZ(B) and choose a E B such that a(^) = 1. Then, by
(8.1) and (8.3),

1 6 ( ^ ) 1 = 1 ( ^ . ^ ) 1 <p llall IIL^H

for all & G B, and Proposition 2.1 ii) now shows that ^EA^V).

Remarks. - In [7] the narrow spectrum of V was defined as the
set V H S^ H OTUB), and the main problem was to show that
V 0 Si H CTZ(B) is nonempty, whenever B is an algebra with identity
and V =^{0}. Only partial results in that direction were obtained in
[6] and [8]. Theorem 8.1 together with Proposition 2.5 now solve
the problem completely.

Part ii) of Theorem 8.1 implies that every homomorphism in
OTl(B) which is the weak-* limit of a bounded filter in V is the weak-*
limit of a filter in V with bound one. This result is somewhat surpris-
ing in view of the results for the related problem of bounded spectral
synthesis (cf. Varopoulos [ 17]).

Theorem 8.1 has connections with the work of Dixmier [4] on
the characteristic of weak-* dense subspaces of dual Banach spaces.
If W is a weak-* dense linear subspace of the dual B* of an arbitrary
Banach space B, then Dixmier defines the characteristic cA(W) ofW as

c/?(W) = inf sup | < ^ & ) | ,
&eB, l | f t l | ^ i y e w n s ^

and he shows that c/?(W) > 0 if and only if U W H S . = B*.p>o •
Let V be an L-invariant subspace of the dual of a Banach algebra

B with a 1-bounded approximate identity. If we apply Dixmier's
definition to V, considered as a dense subspace of B^I/)*, we
obtain

I I L ^ I I l l & v l l 2
ch(V) = inf ——— = inf —k—— '

o . v ^ o 116 y l l i ^ .v^ 0 l l ^ v l l iL L L L
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If c /z(V)>0, then the two norms | |- |li and IMI^ on BCL/) are
equivalent, and it follows that A^(V) = A^(V). Consequently, if
A^(V) ^= A^(V), then we have an example of a subspace V of charac-
teristic 0. However, the condition A ^ ( V ) ^ A ^ ( V ) is not necessary
for V to be of characteristic 0. Warner [18] gives an example of a
weak-* dense subspace H of L°°(R) with ch(H) = 0. This subspace
happens to be L-invariant so we can define the representation L11 of
L^R). It follows from Theorem 6.5 that Ai(H) = A^H).

As an application of Theorem 8.1 we shall give a concrete inter-
pretation of A,(V) for the Beurling algebras. We start by collecting
some basic definitions and facts about these algebras.

Let ^ be a locally compact abelian group, and denote a Haar
measure by m. Let S C ̂  be a closed semigroup containing the
identity 0 of ^, and assume that S is the closure of its interior. Let p
be a positive, m-measurable, submultiplicative function on §, i.e.
satisfying p(x -t- y) < p ( x ) p ( y ) for all x, y E§, and assume that p
and \lp are bounded on every compact set. Assume further that
p(0) = 1 and that p is continuous at 0. (This last assumption is not
essential. It is used only in order to get the constants in Conditions
(2) and (3) below equal to 1). The Banach space of all m-measurable
functions / on S such that

11/11 == [ \f(x)\p(x)dm(x)<
v 3?

is denoted by Lp(S?). Let for each y ^=S? and /G L^GS) the translate
/ be defined by

f ( x - y ) if x G ^ + S
fyW =

0 otherwise.

Then ^EL^G§), || fy \\ < p ( y ) ||/||, and the map S ^ L;(S),
y ^ fy is continuous. L^(S) is a Banach algebra with 1-bounded
approximate identity under convolution *, defined by

/ * S = f g(x)f^dm(x) ,

and ||/* g\\ < 11/11 \\g\\. The dual L^(S)* is isometrically isomorphic
to the Banach space L^(8?) of all ^-measurable functions F on S
satisfying
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1 1 T 7 1 1 I F ( X ) | ^I I F || = ess sup ———— < oo .
POO

The duality between L^(S) and L^(S) is given by

< F , / ) = V F(;c)/0c)^m(x) .

For F G L^(§) and y G § we define the translate F^, by the duality
relation (Fy , /> = <F ,^>. Then

F/x) = F(^ + x) and || Fy \\ < p ( y ) || F || .

The Gelfand space 011(1 (̂5?)) consists of all multiplicative func-
tions x in L^(S), i.e. all x^^S) satisfying \(x + y ) = x(^)x(> /)•
Note that/ /x)=X(^)/(x).

The representation L of L^(§) on L^(S) is given by

(L^F) (x )=(F , / , ) , /e4(§) , FEL;(S) , x E 8 .

Note that L^F is continuous, that || L^-F || < || F || ||/||, and that
(L,F) ,=L,F,=L^F.

Let V be an L-invariant subspace of L^(<§). For \e <)Tc(L^(S))
we introduce the following three conditions :

Condition ( 1 ) . - For every e > 0 and every nonnegative, m-mea-
surable, locally bounded function G} on ^Ssuch that lim o;(x) p(x) =0,

;!C—>-°°

there exists a function F G V such that ess sup | F(x) - \(x) I o?(jc) < e.
;ce s-

Condition ( 2 ) . — For every e > 0 a^rf eiw^ compact subset K
o/ S, r/we ^/5r5 a continuous function F G V 5-^c/? r/?^r || F || < 1
and sup | F(jc) - x(^) I < G.

jcGK

Condition ( 3 ) . - For every e > 0 fl^zd ^r^r^ compact subset K
o/S, ^/^e exists a continuous function F G V such that ||F|| < 1,
F(0) > 1 - e and sup || F^ - \(x) F || < e.

jceK

Obviously, Condition (3) implies Condition (2), and Condition
(2) implies Condition (1). The different spectra of V are characterized
in terms of Conditions (1) — (3) by the following theorem.
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THEOREM 8.2. — \G A,(V) if and only if\ satisfies Condition ( i ) ,
i= 1,2,3.

Proof. — The proof of the sufficiency of Condition (i) is rather
obvious in all three cases and is omitted. So let us prove the necessity.

i = 1 : The result and the idea of the proof goes back to
Beurling, and special cases have been used by several authors (e.g.
[13, p. 25]). Since the proof does not seem to be available in the
literature, we give it here. Let \ G A^ (V) and let a? be given as in
Condition (1). The space A^ of all w-measurable functions / on S
such that

II /1|^ = ess sup | f(x) | G}(X) < oo and lim f(x) o;(x) = 0
xea? ^->°°

is a Banach space under the || • 11^-norm. (Of course, functions / and g
with ||/- g\\^ = 0 have been identified). Note that L^(S) C A^
and that the inclusion map is continuous.

In order to show that Condition (1) is fulfilled for x we have to
show that x belongs to the || - 11^,-closure of V. Arguing by contradiction,
we assume the contrary. Then, by the Hahn-Banach theorem, there is
a jLig E A^, such that <^o , F> = 0 for all F € V whereas (jn^ , \) = 1.
Choose a continuous function /€ L^(S), supported by a compact sub-
set of the interior ofS, and such that/(x) = 1. Since F ̂  (jn^ , Ly F>
is a continuous linear functional on L^(S), there exists an element
^eL;(§)* such that {v , F) = (^ , L^F) for all FEL;G§). We
shall prove that v can be identified with an element g of L^(S), i.e.
that

< ^ , F ) = < F , ^ > = ^ F(x)g(x)dm(x) .

But then < F , ^ > = = (^ ,L^ .F>= 0 for all F E V , and

8(X) = <^o ^/X) =/(X) <^o ' X > = 1 ,

which contradicts the fact that x^Ai (V) = V 0 JTl(L^(S)).
The rest of the proof thus consists in showing that ^GL^(S).

To this end, put fy(x) = fy(y\ x, y^.^. Each fy is a continuous
function onS? with compact support, and the map S -> A^,y^fV is
continuous. It follows that the vector-valued integral / V(y)fydm(y)

»/ 3P
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exists and defines an element of A^ for each F G L^GS) with compact
support. An easy calculation shows that / P ( y ) fV dm(y) = L/-F.J -s j

Put g ( y ) = (jLAo ,fy). Then g is a continuous function on S, and

< ^ , F ) = < M o , L ^ F > = f^ FO.X^/^dmC^

- f F ( y ) g ( y ) d m ( y )
^•s

for each F E L^(S) with compact support. It follows that

| f F(y)g(y)dm(y)\<\\v\\ ||F||_.
I ^a? ' Lp

We conclude that ^E L^S) and that the linear functional r = v — g
on L°^(<§) annihilates the subspace of functions with compact support.
We shall finish the proof by showing that r = 0. Let GG L^(S) and
e > 0 be given. Choose a compact subset K of § such that
p(x) oj(jc) < e/(|lMo II I I G i l 11/11) outside K and

f \G(x)g(x)\dm(x) <e ,
C K.

0 i f x G K U ( K + supp/) ,
and define G^(x) =

G(x) otherwise.

Then I < G K ^ > I = | / G^OO g(x) dm(x) | < e .

From (L^Gy)(x) = ( G ^ , / ^ ) , it follows that

| ( L ^ G K ) O O I < I I G K I I I I ̂  I I < I I G|| | l / | lp(x) for all x G S

and that

(L^GK)M = /^ GK^/^^dm^) = 0 for all ^ G K .' 'jc+supp/

Hence
IL^GKIL = ess sup |(L.GK)OO I GJM < 6/|| Mo

JC^K

so that
|^,GK>I=I<^O^GK>I<IIM IIL^GKIL<€ .

Since G — G^ has compact support,
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< ^ G ) = < T , G K > = < ^ , G K > - < G K , ^ > .
Hence

| < T , G > | < | < ^ , G K > I + 1<G^)1 <2e ,

and, e > 0 being arbitrary, this shows that <r , G> = 0, i.e. r = 0.
The proof of the case ;' = 1 is complete.

1 = 2 : Let x^ A^(V), e > 0 and K, a compact subset of S, be
given. Since L^(8?) has an approximate identity, bounded in norm by
one, we can choose ^EL^(S) such that g(\) = 1 and \\g\\ < 1 4- e. It
follows from Theorem 8.1 ii) and an easy covering argument that, if
C is an arbitrary compact subset of L1 (S), then there exists a G G V
such that || G || < 1 and I <G , /> - /(x) I < e, for all /G C. In parti-
cular, since {g^ ; x G K } is a compact subset of L^S), there is a
G G V with I I G || < 1 satisfying

| (G,^)-^(x) l<e ,

for all x E K. But <G , ̂  > = (L^ G)(x) and ̂ (x) = g(x) x00 = XOO.
With F = L^ G E V we thus have

I I F I I < H ^ l l I I G I K 1 + 6 and sup | P(x) -x(x)\ < e .
jcG K

It follows that Condition (2) is satisfied by x-

i = 3 : Let x eA3(V), e > 0 and K be given, and choose g
such that g(\) = 1 and ||^|| < 1 + e. By Proposition 3.2 iv), there
exists G C V such that || G || == 1 and

II L_ G - x00 G [I = || L G - ̂ (x) G || < e , V;c G K U{0} .
°x °x

Since || G || = 1 and || L^ G - G || < e, we can choose y e S such that

I GO/) 1X1 - e ) p ( y ) and I (L^G) ( y ) - G(y) \ < e p ( y ) .

Put F = p ( y ) ~ 1 (LgG)y. Then :

a) F € V, because F = p ( y ) ~ 1 L G.
gy

b) | |F| |<| |L^G||<| | j?| | I IGIK 1 +e .

c) |F(0)| = p ( y ^ l \ (L^G)(y)\>p(y)~l\G(y)\-e>\-2e.

d) F^ - x0c) F = p(y)-l((L^G - x(x) G) + \(x) (G-LgG))y.
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Hence

I I F^ - x O O F I I < I IL^G - x O O G I I +1x001 I I G - L^G|| <

<e(l +p0c)) , V-^K .

It follows from this that x satisfies Condition (3), and the proof of
Theorem 8.2 is complete.

If ^ is discrete, then L^(S) has an identity, so it follows that
A3 (V) ^0 for all nontrivial V C L^(S). If § is non-discrete, this
need not be true any longer. Nyman [13] gives examples of weight
functions p and of L-invariant subspaces V of L^(R) and L^R^)
with empty spectrum A^(V). However, if § = g and the weight
function p satisfies the following two conditions

^)>1,V.^, and t Aog^<^^xe^^
n=i n2

then, by a theorem of Domar [5], L^^) is regular and semisimple,
and every closed proper ideal of L^^) is included in the kernel of
some \ GOTK^L1^)). Thus in this case, by Theorem 6.5 and the
definition of the spectrum, A3(V) = A^(V) ^= 0 for all L-invariant,
nontrivial V C L^(^). In particular, there exists a character \ satisfying
Condition (3). This was first proved in [5], and for ^= R and
p(x) = 1 by Beurling in [2], though the results of these papers
were only stated in terms of A^ and Condition (2).

9. Counterexamples.

In this final section we shall show that there exist Banach algebras
B and L-invariant subspaces V C B* such that A^ (V) ̂  A^(V) ̂  A3(V).

Let B be either the disc algebra A(D) (cf. Example 2.3) or the
algebra A^D) of all analytic functions /(z) = S^a^z" such that
11/11 = 2^ |aJ < oo. (Of course, A^D) is isomorphic to the algebra
L^(S) with § = Z'' and p ( x ) = 1). In both cases, OTT(B) = D, and we
shall write ^ for the multiplicative functional that corresponds to
z G D .

Let C = { z ^ , z^ ,73 , . . .} be a countable subset of 3D and
denote its closure by E. When B = A^D) we furthermore assume
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that C is independent. Let V = V(C) be the linear subspace of all
^ G B * such that

^ = S a/^. with S |Qy | < oo .
/ - i / / - i

Since L^p. = £^ay/(zp^., V is invariant under L. The spectra of
I/ are characterized in terms of E by the following theorem (cf. [9]).

THEOREM 9.1. - i) // E is a B-zero set, then

A^(V) = A,(V) = A3<V) = E .

ii) // E is not a B-zero set and E ̂  3D, then A^ (V) = D and
A^(V) = A3<V) = E.

iii) // E = 3D, then A^(V) = A^V) = D and A^(V) = E.
We recall that E is said to be a B-zero set if there is a nontrivial

/eB that vanishes on E. It is well-known that E is an A(D)-zero
set, if and only if the linear Lebesgue measure m(E) is zero. A fortiori,
if E is an A^D^zero set, then m(E) = 0.

Proof. — We begin by proving that if ^ = 2^a.^., then

1 1 ^ 1 1 = ^ la, | . (9.1)
/ - i

Let H = { z ^ ,z^ , . . . ,^}. When B = A(D), we apply a wellknown
theorem of Carleson and Rudin (see e.g. [15]) and conclude that,
given / € C(H), there exists a g G B such that

^ , H = = / and \\g\\^= I I / H e w -

When B = A^D), a similar conclusion follows from Kronecker's
theorem, H being independent. In both cases, we obtain

^ 1 ^ , 1 > 1 1 ^ 1 1 = sup 1 ^ a,/(^)l>
; = 1 /€BJ|/||<1 , = i

n oo
> sup | ̂  a./(z,)| - ^ I a, I =

/GBJI/IKl /=! /=„+!
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sup | ̂  a,/(z-)|- V |a, | =
/^C(H),||/||^H)<1 /=l / / ,̂ i /

= £ 1 ^ 1 - i ia,i.
/ = 1 / = n + l

and (9.1) follows by letting n tend to infinity.
From (9.1) we now obtain the following two equalities :

|| Ly I I = sup I I L.^ || = sup S | ̂ W I = sup I /(z) |
M G V j i ^ l K i E|ay|<l , = i zeE /Q ̂

^ v(^zn ^ ̂ z ̂  z^) == inf I I 4 ̂  - ZQ^ I I =
L ° ^VJlMll-1

= inf V |a,(z, - Zo) I = dist(Zo , E) . (9.3)
£ 1 ^ . 1 = 1 /""i

By (9.2) and Proposition 2.1, A^(V) = E, the polynomially convex
hull of E. Since the function z ̂  z generates B,

A 3 ( V ) = { z ; d i s t ( z , E ) = 0 } = E ,

by (9.3) and Proposition 3.2 iii). This proves the theorem for A^(V)
and A3(V). To prove the theorem for A^(V), we first note that, since
Ker I/ = { / E B ;/|p = 0}, A^(V) = D if and only if E is not a B-
zero set. So assume that A^(V)^ D. Then A^(V) is a B-zero set,
and it follows that A^(V) must be totally disconnected. By Theo-
rem 6.5 and by what we have already proved, we conclude that
A ^ ( V ) = A 3 ( V ) = E .

Remarks. — I f E ^ = 3 D i s not a B-zero set, then, since A^ (V) ̂ A^tV)
and Ker L^ ={0}, V is a weak-* dense subspace of B* of charac-
teristic zero (cf. [4], [181).

If jji = £^a.(^. E V and a. ^= 0 for all /, then the norm closure
of {L^ ; /EB} equals V, so it follows that A,(^i) = A,(V). Hence
Theorem 9.1 gives us examples of elements in B* with different
spectrum and narrow spectrum and also of elements with different
narrow and approximate point spectrum (cf. [9]).
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Nyman [13] and Gurarii [8] give a characterization of A^O),
i/GA^D)*, in terms of a certain analytic transform of y, and from
this characterization it is easy to deduce the result of Theorem 9.1
concerning A^(V).

The existence of Banach algebras B and L-invariant subspaces
V C B* such that A^ (V) ̂  A^(V) ^ A^(V) now follows from Theorem
9.1 ii) and iii) and the following easily proved proposition.

PROPOSITION 9.2. - Let B be the normed direct sum B^ ©B^ of
two Banach algebras B^ and B^, and identify OTt(B) with the disjoint
union ofWi(B^) and ^(B^). Let V^ C B^ and V^ C B^ be L-invariant
subspaces and put V = V^ ® V^ C B*. Then V /5 L-invariant, and
A,.(V) f5 //^ disjoint union of A,(V^) a^d A^(V^) for i = 1 , 2 , 3 .

We can also use Theorem 9.1 to obtain an example with
A^S ® T) + A2(S) U A^CT) (cf. Proposition 4.2 ii)).

Example 9.3. — Let E^ and E^ be two closed proper subsets of
3D such that E^ U E^ = 3D, let C\ and C^ be countable dense subsets
of E^ and E^ , respectively, and define the corresponding subspaces
Y! = = V ( C i ) a n d V 2 = V(C^) of A(D)* as in Theorem 9.1. Put S = I/1

and T = L/2. Then A^S) UA^(T) = 3D and, by Proposition 4.2 ii),
A^(S ® T) D 3D. Since 3D is the Shilov boundary of A(D), it follows
from Proposition 2.1 that A^S © T) = D. Thus

A^(S © T) ̂  A^S) U A^O)
in this case.
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