Soient une surface de Riemann hyperbolique, une mesure harmonique à support dans la frontière de Martin de , et la sous-algèbre de formée des valeurs frontières de fonctions holomorphes bornées sur . On donne une classification complète des -sous-modules fermés de , (-fermés, si ), lorsque est régulière et admet une famille suffisamment grande de fonctions analytiques multiplicatives bornées satisfaisant une condition d’approximation. On en déduit un résultat correspondant pour les espaces de Hardy sur . Pour établir le résultat principal, on démontre et utilise un théorème de Cauchy généralisé et sa réciproque pour . La théorie des lignes de Green est aussi utilisée effectivement.
Let be a hyperbolic Riemann surface, a harmonic measure supported on the Martin boundary of , and the subalgebra of consisting of the boundary values of bounded analytic functions on . This paper gives a complete classification of the closed -submodules of , (weakly closed, if , when is regular and admits a sufficiently large family of bounded multiplicative analytic functions satisfying an approximation condition. It also gives, as a corollary, a corresponding result for the Hardy spaces on . A generalized Cauchy theorem and its converse for are proved in the course of establishing the main result. The theory of Green lines is also used effectively.
@article{AIF_1974__24_4_241_0, author = {Hasumi, Morisuke}, title = {Invariant subspaces on open {Riemann} surfaces}, journal = {Annales de l'Institut Fourier}, pages = {241--286}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, number = {4}, year = {1974}, doi = {10.5802/aif.541}, zbl = {0287.46066}, mrnumber = {51 #901}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.541/} }
TY - JOUR AU - Hasumi, Morisuke TI - Invariant subspaces on open Riemann surfaces JO - Annales de l'Institut Fourier PY - 1974 SP - 241 EP - 286 VL - 24 IS - 4 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.541/ DO - 10.5802/aif.541 LA - en ID - AIF_1974__24_4_241_0 ER -
Hasumi, Morisuke. Invariant subspaces on open Riemann surfaces. Annales de l'Institut Fourier, Tome 24 (1974) no. 4, pp. 241-286. doi : 10.5802/aif.541. https://aif.centre-mersenne.org/articles/10.5802/aif.541/
[1] On two problems concerning linear transformations in Hilbert space, Acta Math., 81 (1949), 239-255. | MR | Zbl
,[2] Espaces et lignes de Green, Ann. Inst. Fourier, Grenoble, 3 (1952), 199-264. | Numdam | MR | Zbl
et ,[3] Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, 32, Springer, Berlin, 1963. | MR | Zbl
and ,[4] Bounded holomorphie functions and projections, Illinois J. Math., 10 (1966), 367-380. | MR | Zbl
,[5] Invariant subspace theorems for finite Riemann surfaces, Canad. J. Math., 18 (1966), 240-255. | MR | Zbl
,[6] Ideals and submodules of analytic functions on infinitely connected plane domains. Thesis, University of Illinois at Urbana-Champaign, 1972.
,[7] Invariant subspaces of Hardy classes on infinitely connected plane domains, Bull. Amer. Math. Soc., 78 (1972), 857-860. | MR | Zbl
,[8] Invariant subspaces of Hardy classes on infinitely connected open surfaces (to appear). | Zbl
,[9] A converse of Cauchy's theorem and applications to extremal problems, Acta Math., 100 (1958), 1-22. | MR | Zbl
,[10] Boundary values of analytic and harmonic functions, Math. Z., 78 (1962), 1-24. | MR | Zbl
,[11] The space of bounded analytic functions on a region, Ann. Inst. Fourier, Grenoble, 16 (1966), 235-277. | Numdam | MR | Zbl
and ,[12] Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, 164, Springer, Berlin, 1970. | MR | Zbl
and ,[13] Doubly invariant subspaces, Pacific J. Math., 14 (1964), 701-707. | MR | Zbl
,[14] Simply invariant subspaces and generalized analytic functions, Proc. Amer. Math. Soc., 16 (1965), 813-818. | MR | Zbl
,[15] Ideals and invariant subspaces of analytic functions, Trans. Amer. Math. Soc., 111 (1964), 493-512. | MR | Zbl
,[16] Invariant subspaces on Riemann surfaces, Canad. J. Math., 18 (1966), 399-403. | MR | Zbl
,[17] The maximum principle for multiple-valued analytic functions, Acta Math., 126 (1971), 63-82. | MR | Zbl
,[18] Hp sections of vector bundles over Riemann surfaces, Ann. of Math., 94 (1971), 304-324. | MR | Zbl
,[19] Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. inst. Fourier, Grenoble, 7 (1957), 183-281. | Numdam | MR | Zbl
,Cité par Sources :