On donne quelques conditions pour l’existence de fonctions réelles de Baire de toutes les classes sur certains espaces -analytiques (appelés espaces analytiques disjoints) et sur tous les espaces pseudo-compacts. On montre que l’indice de stabilité séquentielle de l’espace de Banach des fonctions réelles bornées et continues est égal à 0,1 ou (= premier ordinal non dénombrable) sur ces espaces. Au contraire, on montre que l’espace des fonctions de Baire réelles bornées de la première classe contient des sous-espaces linéaires fermés de l’indice pour tous les ordinaux dénombrables . On montre que l’indice de stabilité séquentielle des sous-espaces linéaires des fonctions réelles continues sur un compact reste invariant par rapport à l’immersion isomorphique dans l’espace des fonctions réelles continues sur un compact quelconque.
Several equivalent conditions are given for the existence of real-valued Baire functions of all classes on a type of -analytic spaces, called disjoint analytic spaces, and on all pseudocompact spaces. The sequential stability index for the Banach space of bounded continuous real-valued functions on these spaces is shown to be either , or (the first uncountable ordinal). In contrast, the space of bounded real-valued Baire functions of class 1 is shown to contain closed linear subspaces with index for each countable ordinal . The sequential stability index for linear subspaces of continuous real-valued functions on a compact space is shown to be invariant under isomorphic embeddings in the space of continuous real-valued functions on any compact space.
@article{AIF_1974__24_4_47_0, author = {Jayne, J. E.}, title = {Space of {Baire} functions. {I}}, journal = {Annales de l'Institut Fourier}, pages = {47--76}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {24}, number = {4}, year = {1974}, doi = {10.5802/aif.531}, zbl = {0287.46031}, mrnumber = {51 #6714}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.531/} }
Jayne, J. E. Space of Baire functions. I. Annales de l'Institut Fourier, Tome 24 (1974) no. 4, pp. 47-76. doi : 10.5802/aif.531. https://aif.centre-mersenne.org/articles/10.5802/aif.531/
[1] Mémoire sur les espaces topologiques compacts, Verh. Akad. Wetensch., Amsterdam, 14 (1929), 1-96. | JFM
et ,[2] The sequential stability index of a function space, Mathematika, 20 (1973), 210-213. | MR | Zbl
and ,[3] On the cardinality of first countable compacta, Soviet Math. Dokl., 10 (1969), 951-955.
,[4] On topologies and Boundaries in Potential Theory, Lecture Notes in Mathematics No 175, Springer-Verlag, Berlin (1971). | MR | Zbl
,[5] Remarks on a theorem of Schneider on the existence in perfectly normal bicompacta of an A-set which is not a B-set, Vestnik Moskov. Univ. Ser. I Mat. Meh., 2 (1962), 20.
,[6] Baire sets in complete topological spaces, Ukrain Mat. Z., 22 (1970), 330-342.
,[7] Ensembles boréliens et analytiques dans les espaces topologiques, C. R. Acad. Sci. Paris, 232 (1951), 2174-2176. | MR | Zbl
,[8] Ensembles K-analytiques et K-Sousliniens. Cas général et cas métrique, Ann. Inst. Fourier, Grenoble, 9 (1959), 75-81. | Numdam | MR | Zbl
,[9] A contribution to the descriptive theory of sets. General Topology and its Relations to Modern Analysis and Algebra I., Proc. Prague Symp., Academic Press, (1962). | Zbl
,[10] A survey of separable descriptive theory of sets and spaces, Czech. Math. J., 20 (95), (1970), 406-467. | MR | Zbl
,[11] Rings of Continuous Functions. Van Nostrand Co., Princeton, (1960). | MR | Zbl
et ,[12] Set Theory, Chelsea, New York, (1957). | MR | Zbl
,[13] Trois exemples dans la théorie des espaces de fonctions continues, C. R. Acad. Sci. Paris, A 276 (1973), 685-687. | MR | Zbl
,[14] Descriptive set theory in compact spaces, Notices Amer. Math. Soc., 17 (1970), 268.
,[15] Spaces of Baire functions, Baire classes, and Suslin sets. Doctoral dissertation, Columbia University, New York, (1971).
,[16] Topological representations of measurable spaces. General Topology and its Relations to Modern Analysis and Algebra III, Proc. Prague Symp., Academic Press, (1972). | Zbl
,[17] Characterizations and metrization of proper analytic spaces, Inventiones Mathematicae, 22 (1973), 51-62. | MR | Zbl
,[18] Topology, Vol. I, Academic Press, New York, (1966). | MR | Zbl
,[19] Sur les fonctions représentables analytiquement, J. Math. Pures Appl., 1 (1905), 139-216. | JFM
,[20] L'intégration dans les espaces généraux, Bull. Soc. Math. France, 88 (1960), 469-497. | Numdam | MR | Zbl
,[21] Compactification, Baire functions, and Daniell integration, Acta Sci. Math. (Szeged), 24 (1963), 204-218. | MR | Zbl
,[22] The Baire order problem for compact spaces, Duke Math. J., 33 (1966), 33-40. | MR | Zbl
,[23] Function spaces and the Aleksandrov-Urysohn conjecture, Ann. Mat. Pura Appl., 86 (1970), 25-29.
,[24] Spaces of continuous functions III, [The space C(X) for X without perfect subsets], Studia Math., 18 (1959), 211-222. | MR | Zbl
et ,[25] Borel sets in perfectly normal bicompacta, Soviet Math. Dokl., 7 (1966), 1236-1239. | MR | Zbl
,[26] Descriptive Borel sets, Proc. Roy. Soc., A 286 (1965), 455-478. | MR | Zbl
,[28] Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc., 8 (1957), 39-42. | MR | Zbl
,[29] A remark on the weak-star topology of l∞, Studia Math., 30 (1968), 355-359. | MR | Zbl
,[30] Hypothèse du Continu, Monografje Matematyczne, Warsaw, 4 (1934). | Zbl
,[31] On closed mappings II, Mat. Sb. (N.S.), 52 (94), 579-588, (1960). | MR | Zbl
,Cité par Sources :